These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 14970378)

  • 21. Exploring the electrostatic energy landscape for tetraloop-receptor docking.
    He Z; Zhu Y; Chen SJ
    Phys Chem Chem Phys; 2014 Apr; 16(14):6367-75. PubMed ID: 24322001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular Concentrations of Nucleotide Diphosphate-Chelated Magnesium Ions Accelerate Catalysis by RNA and DNA Enzymes.
    Yamagami R; Huang R; Bevilacqua PC
    Biochemistry; 2019 Sep; 58(38):3971-3979. PubMed ID: 31512860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Affinities and selectivities of divalent cation binding sites within an RNA tertiary structure.
    Bukhman YV; Draper DE
    J Mol Biol; 1997 Nov; 273(5):1020-31. PubMed ID: 9367788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for a thermodynamically distinct Mg2+ ion associated with formation of an RNA tertiary structure.
    Leipply D; Draper DE
    J Am Chem Soc; 2011 Aug; 133(34):13397-405. PubMed ID: 21776997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations.
    Hermann T; Westhof E
    Structure; 1998 Oct; 6(10):1303-14. PubMed ID: 9782053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of monovalent cation size on the stability of RNA tertiary structures.
    Lambert D; Leipply D; Shiman R; Draper DE
    J Mol Biol; 2009 Jul; 390(4):791-804. PubMed ID: 19427322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of magnesium ions on the stabilization of RNA oligomers of defined structures.
    Serra MJ; Baird JD; Dale T; Fey BL; Retatagos K; Westhof E
    RNA; 2002 Mar; 8(3):307-23. PubMed ID: 12003491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ion-RNA interactions thermodynamic analysis of the effects of mono- and divalent ions on RNA conformational equilibria.
    Leipply D; Lambert D; Draper DE
    Methods Enzymol; 2009; 469():433-63. PubMed ID: 20946802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Folding of RNA tertiary structure: Linkages between backbone phosphates, ions, and water.
    Draper DE
    Biopolymers; 2013 Dec; 99(12):1105-13. PubMed ID: 23568785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A compact RNA tertiary structure contains a buried backbone-K+ complex.
    Conn GL; Gittis AG; Lattman EE; Misra VK; Draper DE
    J Mol Biol; 2002 May; 318(4):963-73. PubMed ID: 12054794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Principles of RNA compaction: insights from the equilibrium folding pathway of the P4-P6 RNA domain in monovalent cations.
    Takamoto K; Das R; He Q; Doniach S; Brenowitz M; Herschlag D; Chance MR
    J Mol Biol; 2004 Nov; 343(5):1195-206. PubMed ID: 15491606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Salt contribution to RNA tertiary structure folding stability.
    Tan ZJ; Chen SJ
    Biophys J; 2011 Jul; 101(1):176-87. PubMed ID: 21723828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Many-body effect in ion binding to RNA.
    Zhu Y; Chen SJ
    J Chem Phys; 2014 Aug; 141(5):055101. PubMed ID: 25106614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting ion binding properties for RNA tertiary structures.
    Tan ZJ; Chen SJ
    Biophys J; 2010 Sep; 99(5):1565-76. PubMed ID: 20816069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calculation of the binding free energy for magnesium-RNA interactions.
    Petrov AS; Lamm G; Pack GR
    Biopolymers; 2005 Feb; 77(3):137-54. PubMed ID: 15633198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot.
    Gonzalez RL; Tinoco I
    J Mol Biol; 1999 Jun; 289(5):1267-82. PubMed ID: 10373367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of diffuse K+ and Mg2+ ion binding to a two-base-pair kissing complex by single-molecule mechanical unfolding.
    Li PT
    Biochemistry; 2013 Jul; 52(29):4991-5001. PubMed ID: 23842027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diffuse Ions Coordinate Dynamics in a Ribonucleoprotein Assembly.
    Wang A; Levi M; Mohanty U; Whitford PC
    J Am Chem Soc; 2022 Jun; 144(21):9510-9522. PubMed ID: 35593477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Consequences of Mg
    Halder A; Roy R; Bhattacharyya D; Mitra A
    Phys Chem Chem Phys; 2018 Aug; 20(34):21934-21948. PubMed ID: 30088497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.