These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 14970441)

  • 1. Production and surface modification of polylactide-based polymeric scaffolds for soft-tissue engineering.
    Cao Y; Croll TI; Cooper-White JJ; O'Connor AJ; Stevens GW
    Methods Mol Biol; 2004; 238():87-112. PubMed ID: 14970441
    [No Abstract]   [Full Text] [Related]  

  • 2. Systematic selection of solvents for the fabrication of 3D combined macro- and microporous polymeric scaffolds for soft tissue engineering.
    Cao Y; Croll TI; Oconnor AJ; Stevens GW; Cooper-White JJ
    J Biomater Sci Polym Ed; 2006; 17(4):369-402. PubMed ID: 16768291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition.
    Vozzi G; Flaim C; Ahluwalia A; Bhatia S
    Biomaterials; 2003 Jun; 24(14):2533-40. PubMed ID: 12695080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Architecture control of three-dimensional polymeric scaffolds for soft tissue engineering. I. Establishment and validation of numerical models.
    Cao Y; Davidson MR; O'Connor AJ; Stevens GW; Cooper-White JJ
    J Biomed Mater Res A; 2004 Oct; 71(1):81-9. PubMed ID: 15368257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods.
    Ho MH; Kuo PY; Hsieh HJ; Hsien TY; Hou LT; Lai JY; Wang DM
    Biomaterials; 2004 Jan; 25(1):129-38. PubMed ID: 14580916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple synthetic route to the formation of a block copolymer of poly(lactic-co-glycolic acid) and polylysine for the fabrication of functionalized, degradable structures for biomedical applications.
    Lavik EB; Hrkach JS; Lotan N; Nazarov R; Langer R
    J Biomed Mater Res; 2001 May; 58(3):291-4. PubMed ID: 11319743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical characterization of photopolymerizable PLGA blends.
    Baroli B
    Adv Exp Med Biol; 2006; 585():183-96. PubMed ID: 17120785
    [No Abstract]   [Full Text] [Related]  

  • 8. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: I. Synthesis and characterization.
    Wang N; Wu XS; Li C; Feng MF
    J Biomater Sci Polym Ed; 2000; 11(3):301-18. PubMed ID: 10841281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical properties of lactide-co-glycolide polymers for the use in microparticle preparation by the aerosol solvent extraction system.
    Engwicht A; Girreser U; Müller BW
    Int J Pharm; 1999 Aug; 185(1):61-72. PubMed ID: 10425366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-structured polymers enhance bladder smooth muscle cell function.
    Thapa A; Miller DC; Webster TJ; Haberstroh KM
    Biomaterials; 2003 Aug; 24(17):2915-26. PubMed ID: 12742731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of polylactic acid-polyglycolic acid blends using microwave radiation.
    Pandey A; Pandey GC; Aswath PB
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):227-33. PubMed ID: 19627787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold.
    Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS
    Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo characterisation of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications.
    Day RM; Boccaccini AR; Maquet V; Shurey S; Forbes A; Gabe SM; Jérôme R
    J Mater Sci Mater Med; 2004 Jun; 15(6):729-34. PubMed ID: 15346742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of the physicomechanical and ab initio quantum energy transitions of a crosslinked PLGA scaffold.
    Sibambo SR; Pillay V; Choonara YE; Khan RA; Sweet JL
    Biomaterials; 2007 Sep; 28(25):3714-23. PubMed ID: 17524474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation.
    Wu XS; Wang N
    J Biomater Sci Polym Ed; 2001; 12(1):21-34. PubMed ID: 11334187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of various types of scaffold for tissue engineered intervertebral disc.
    Kim SH; Yoon SJ; Choi B; Ha HJ; Rhee JM; Kim MS; Yang YS; Lee HB; Khang G
    Adv Exp Med Biol; 2006; 585():167-81. PubMed ID: 17120784
    [No Abstract]   [Full Text] [Related]  

  • 17. Solvent effects on the microstructure and properties of 75/25 poly(D,L-lactide-co-glycolide) tissue scaffolds.
    Sander EA; Alb AM; Nauman EA; Reed WF; Dee KC
    J Biomed Mater Res A; 2004 Sep; 70(3):506-13. PubMed ID: 15293325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA composites.
    Durucan C; Brown PW
    J Biomed Mater Res; 2000 Sep; 51(4):717-25. PubMed ID: 10880121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.
    Jiang T; Abdel-Fattah WI; Laurencin CT
    Biomaterials; 2006 Oct; 27(28):4894-903. PubMed ID: 16762408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface characterization of functionalized polylactide through the coating with heterobifunctional poly(ethylene glycol)/polylactide block copolymers.
    Otsuka H; Nagasaki Y; Kataoka K
    Biomacromolecules; 2000; 1(1):39-48. PubMed ID: 11709841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.