These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 14970441)
21. The production of uniformly sized polymer microspheres. Amsden B Pharm Res; 1999 Jul; 16(7):1140-3. PubMed ID: 10450945 [No Abstract] [Full Text] [Related]
22. Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Wen X; Tresco PA Biomaterials; 2006 Jul; 27(20):3800-9. PubMed ID: 16564567 [TBL] [Abstract][Full Text] [Related]
23. Optimization of preparation of DHAQ-loaded PEG-PLGA-PEG nonaparticles using central composite design. Duan Y; Xu S; Wang Q; Liu J; Zhang Z J Mater Sci Mater Med; 2006 Jun; 17(6):559-63. PubMed ID: 16691355 [TBL] [Abstract][Full Text] [Related]
24. Synthesis and characterization of PLGA nanoparticles. Astete CE; Sabliov CM J Biomater Sci Polym Ed; 2006; 17(3):247-89. PubMed ID: 16689015 [TBL] [Abstract][Full Text] [Related]
25. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid oligomers: Part II. Biodegradation and drug delivery application. Wang N; Wu XS J Biomater Sci Polym Ed; 1997; 9(1):75-87. PubMed ID: 9505204 [TBL] [Abstract][Full Text] [Related]
26. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. Nam YS; Park TG J Biomed Mater Res; 1999 Oct; 47(1):8-17. PubMed ID: 10400875 [TBL] [Abstract][Full Text] [Related]
28. Surface modification of porous scaffolds with nanothick collagen layer by centrifugation and freeze-drying. Chen G; Okamura A; Sugiyama K; Wozniak MJ; Kawazoe N; Sato S; Tateishi T J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):864-72. PubMed ID: 19441114 [TBL] [Abstract][Full Text] [Related]
29. Enhanced functions of vascular and bladder cells on poly-lactic-co-glycolic acid polymers with nanostructured surfaces. Miller DC; Thapa A; Haberstroh KM; Webster TJ IEEE Trans Nanobioscience; 2002 Jun; 1(2):61-6. PubMed ID: 16689208 [TBL] [Abstract][Full Text] [Related]
30. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Gentile P; Chiono V; Carmagnola I; Hatton PV Int J Mol Sci; 2014 Feb; 15(3):3640-59. PubMed ID: 24590126 [TBL] [Abstract][Full Text] [Related]
31. The influence of temperature on the degradation rate of LactoSorb Copolymer. Pietrzak WS, Kumar M, Eppley BL. J Craniofac Surg 2003; 14:176-183. Fong KD; Nacamuli RP; Longaker MT J Craniofac Surg; 2003 Jul; 14(4):594-5. PubMed ID: 12947922 [No Abstract] [Full Text] [Related]
32. Biodegradable polyester elastomers in tissue engineering. Webb AR; Yang J; Ameer GA Expert Opin Biol Ther; 2004 Jun; 4(6):801-12. PubMed ID: 15174963 [TBL] [Abstract][Full Text] [Related]
33. Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds. Liu L; Xiong Z; Yan Y; Zhang R; Wang X; Jin L J Biomed Mater Res B Appl Biomater; 2009 Jan; 88(1):254-63. PubMed ID: 18698625 [TBL] [Abstract][Full Text] [Related]
34. Simple localization of nanofiber scaffolds via SU-8 photoresist and their use for parallel 3D cellular assays. Jiang L; Zhang M; Li J; Wen W; Qin J Adv Mater; 2012 Apr; 24(16):2191-5. PubMed ID: 22431134 [TBL] [Abstract][Full Text] [Related]
35. Fabrication of poly(alpha-hydroxy acid) foam scaffolds using multiple solvent systems. Hu Y; Grainger DW; Winn SR; Hollinger JO J Biomed Mater Res; 2002 Mar; 59(3):563-72. PubMed ID: 11774315 [TBL] [Abstract][Full Text] [Related]
36. Writing 3D patterns of microvessels. Juodkazis S Int J Nanomedicine; 2012; 7():3701-2. PubMed ID: 22888229 [TBL] [Abstract][Full Text] [Related]
37. Influence of PLGA concentrations on structural and mechanical properties of carbonate apatite foam. Munar GM; Munar ML; Tsuru K; Ishikawa K Dent Mater J; 2013; 32(4):608-14. PubMed ID: 23903643 [TBL] [Abstract][Full Text] [Related]
38. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. Miller DC; Thapa A; Haberstroh KM; Webster TJ Biomaterials; 2004 Jan; 25(1):53-61. PubMed ID: 14580908 [TBL] [Abstract][Full Text] [Related]
39. Poly(L-lactide-co-glycolide) thin films can act as autologous cell carriers for skin tissue engineering. Zuber A; Borowczyk J; Zimolag E; Krok M; Madeja Z; Pamula E; Drukala J Cell Mol Biol Lett; 2014 Jun; 19(2):297-314. PubMed ID: 24825569 [TBL] [Abstract][Full Text] [Related]
40. In vivo evaluation of a tri-phasic composite scaffold for anterior cruciate ligament-to-bone integration. Spalazzi JP; Dagher E; Doty SB; Guo XE; Rodeo SA; Lu HH Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():525-8. PubMed ID: 17946839 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]