These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 14970985)

  • 21. Aperture size to therapeutic volume relation for a multielement ultrasound system: determination of applicator adequacy for superficial hyperthermia.
    Moros EG; Myerson RJ; Straube WL
    Med Phys; 1993; 20(5):1399-409. PubMed ID: 8289722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound.
    Moros EG; Novak P; Straube WL; Kolluri P; Yablonskiy DA; Myerson RJ
    Phys Med Biol; 2004 Mar; 49(6):869-86. PubMed ID: 15104313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of a novel solid-state method for determining the acoustic power generated by physiotherapy ultrasound transducers.
    Zeqiri B; Barrie J
    Ultrasound Med Biol; 2008 Sep; 34(9):1513-27. PubMed ID: 18440695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.
    Zeqiri B; Zauhar G; Hodnett M; Barrie J
    Ultrasonics; 2011 May; 51(4):420-4. PubMed ID: 21163509
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Split-focused ultrasound transducer with multidirectional heating for breast tumor thermal surgery.
    Cheng TY; Ju KC; Ho CS; Chen YY; Chang H; Lin WL
    Med Phys; 2008 Apr; 35(4):1387-97. PubMed ID: 18491533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of thermal and ultrasonic properties of some biological tissues.
    El-Brawany MA; Nassiri DK; Terhaar G; Shaw A; Rivens I; Lozhken K
    J Med Eng Technol; 2009; 33(3):249-56. PubMed ID: 19340696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study.
    Moros EG; Straube WL; Klein EE; Yousaf M; Myerson RJ
    Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):893-904. PubMed ID: 7860403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural rheology of a model ointment.
    Pena LE; Lee BL; Stearns JF
    Pharm Res; 1994 Jun; 11(6):875-81. PubMed ID: 7937529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 64-element intraluminal ultrasound cylindrical phased array for transesophageal thermal ablation under fast MR temperature mapping: an ex vivo study.
    Melodelima D; Salomir R; Mougenot C; Moonen C; Cathignol D
    Med Phys; 2006 Aug; 33(8):2926-34. PubMed ID: 16964871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasound coupling media: their relative transmissivity.
    Warren CG; Koblanski JN; Sigelmann RA
    Arch Phys Med Rehabil; 1976 May; 57(5):218-22. PubMed ID: 1275671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field.
    Morris H; Rivens I; Shaw A; Haar GT
    Phys Med Biol; 2008 Sep; 53(17):4759-76. PubMed ID: 18701773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a thermal test object for the measurement of ultrasound intracavity transducer self-heating.
    Killingback AL; Newey VR; El-Brawany MA; Nassiri DK
    Ultrasound Med Biol; 2008 Dec; 34(12):2035-42. PubMed ID: 18723269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-dimensional acoustic attenuation mapping of high-temperature interstitial ultrasound lesions.
    Tyréus PD; Diederich C
    Phys Med Biol; 2004 Feb; 49(4):533-46. PubMed ID: 15005163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic field modeling for physiotherapy ultrasound applicators by using approximated functions of measured non-uniform radiation distributions.
    Gutiérrez MI; Calás H; Ramos A; Vera A; Leija L
    Ultrasonics; 2012 Aug; 52(6):767-77. PubMed ID: 22405588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimum acoustic frequency for focused ultrasound surgery.
    Hill CR
    Ultrasound Med Biol; 1994; 20(3):271-7. PubMed ID: 8059488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combination of thermal and cavitation effects to generate deep lesions with an endocavitary applicator using a plane transducer: ex vivo studies.
    Melodelima D; Chapelon JY; Theillère Y; Cathignol D
    Ultrasound Med Biol; 2004 Jan; 30(1):103-11. PubMed ID: 14962614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.
    Ergün AS
    Ultrasonics; 2011 Oct; 51(7):786-94. PubMed ID: 21459399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators.
    Chopra R; Burtnyk M; Haider MA; Bronskill MJ
    Phys Med Biol; 2005 Nov; 50(21):4957-75. PubMed ID: 16237234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.