These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 14971673)

  • 21. Influence of lateral release on patellar tracking and patellofemoral contact characteristics after total knee arthroplasty.
    Hsu HC; Luo ZP; Rand JA; An KN
    J Arthroplasty; 1997 Jan; 12(1):74-83. PubMed ID: 9021506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iliotibial band tension reduces patellar lateral stability.
    Merican AM; Iranpour F; Amis AA
    J Orthop Res; 2009 Mar; 27(3):335-9. PubMed ID: 18925647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The biomechanics of the human patella during passive knee flexion.
    Heegaard J; Leyvraz PF; Curnier A; Rakotomanana L; Huiskes R
    J Biomech; 1995 Nov; 28(11):1265-79. PubMed ID: 8522541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analytical study on the kinematic and dynamic behaviors of a knee joint.
    Ling ZK; Guo HQ; Boersma S
    Med Eng Phys; 1997 Jan; 19(1):29-36. PubMed ID: 9140871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative measurement of patellofemoral joint stability: force-displacement behavior of the human patella in vitro.
    Senavongse W; Farahmand F; Jones J; Andersen H; Bull AM; Amis AA
    J Orthop Res; 2003 Sep; 21(5):780-6. PubMed ID: 12919863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads.
    Li G; DeFrate LE; Zayontz S; Park SE; Gill TJ
    J Orthop Res; 2004 Jul; 22(4):801-6. PubMed ID: 15183437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic measurement of patellofemoral kinematics and contact pressure after lateral retinacular release: an in vitro study.
    Ostermeier S; Holst M; Hurschler C; Windhagen H; Stukenborg-Colsman C
    Knee Surg Sports Traumatol Arthrosc; 2007 May; 15(5):547-54. PubMed ID: 17225178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cadaveric study on static medial patellar stabilizers: the dynamizing role of the vastus medialis obliquus on medial patellofemoral ligament.
    Panagiotopoulos E; Strzelczyk P; Herrmann M; Scuderi G
    Knee Surg Sports Traumatol Arthrosc; 2006 Jan; 14(1):7-12. PubMed ID: 16001289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of articular, retinacular, or muscular deficiencies on patellofemoral joint stability: a biomechanical study in vitro.
    Senavongse W; Amis AA
    J Bone Joint Surg Br; 2005 Apr; 87(4):577-82. PubMed ID: 15795215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of an augmentation patella prosthesis versus patelloplasty on revision patellar kinematics and quadriceps tendon force: an ex vivo study.
    Mountney J; Wilson DR; Paice M; Masri BA; Greidanus NV
    J Arthroplasty; 2008 Dec; 23(8):1219-31. PubMed ID: 18534488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effective quadriceps and patellar tendon moment arms relative to the tibiofemoral finite helical axis.
    Im HS; Goltzer O; Sheehan FT
    J Biomech; 2015 Nov; 48(14):3737-42. PubMed ID: 26520912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of prosthetic joint line position on knee kinematics and patellar position.
    Yoshii I; Whiteside LA; White SE; Milliano MT
    J Arthroplasty; 1991 Jun; 6(2):169-77. PubMed ID: 1875209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stair climbing results in more challenging patellofemoral contact mechanics and kinematics than walking at early knee flexion under physiological-like quadriceps loading.
    Goudakos IG; König C; Schöttle PB; Taylor WR; Singh NB; Roberts I; Streitparth F; Duda GN; Heller MO
    J Biomech; 2009 Nov; 42(15):2590-6. PubMed ID: 19656517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of anterior displacement of the tibial tuberosity on patellofemoral biomechanics.
    van Eijden TM; Kouwenhoven E; Weijs WA
    Int Orthop; 1987; 11(3):215-21. PubMed ID: 3623759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of the patellar tendon angle and patellar flexion angle in the interpretation of sagittal plane kinematics of the knee after knee arthroplasty: A modelling analysis.
    van Duren BH; Pandit H; Pechon P; Hart A; Murray DW
    Knee; 2018 Mar; 25(2):240-248. PubMed ID: 29501390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Patellofemoral kinematics during knee flexion-extension: an in vitro study.
    Amis AA; Senavongse W; Bull AM
    J Orthop Res; 2006 Dec; 24(12):2201-11. PubMed ID: 17004269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical Analysis of Tibial Tuberosity Medialization and Medial Patellofemoral Ligament Reconstruction.
    Elias JJ; Smith BW; Daney BT
    Sports Med Arthrosc Rev; 2017 Jun; 25(2):58-63. PubMed ID: 28459747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro study of patellar position during sitting, standing from squatting, and the stance phase of walking.
    Sakai N; Luo ZP; Rand JA; An KN
    Am J Knee Surg; 1996; 9(4):161-6. PubMed ID: 8914726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of tibial tuberosity medialization and lateralization on patellofemoral joint kinematics, contact mechanics, and stability.
    Stephen JM; Lumpaopong P; Dodds AL; Williams A; Amis AA
    Am J Sports Med; 2015 Jan; 43(1):186-94. PubMed ID: 25367019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adolescent Patella Instability Extensor Mechanics: Insall Extensor Realignment Versus Medial Patellofemoral Ligament Reconstruction.
    Edmonds EW; Glaser DA
    J Pediatr Orthop; 2016; 36(3):262-7. PubMed ID: 25757204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.