BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 14971928)

  • 1. Impact of protein denaturants and stabilizers on water structure.
    Batchelor JD; Olteanu A; Tripathy A; Pielak GJ
    J Am Chem Soc; 2004 Feb; 126(7):1958-61. PubMed ID: 14971928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postulated effects on water structure of some salts and protein denaturants as inferred from measurements of viscosity B coefficients: example of HbS polymerization.
    Banerjee R; Frilley B; Guissani A
    Indian J Biochem Biophys; 1999 Apr; 36(2):107-17. PubMed ID: 10549170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations of macromolecules in protective and denaturing osmolytes: properties of mixed solvent systems and their effects on water and protein structure and dynamics.
    Beck DA; Bennion BJ; Alonso DO; Daggett V
    Methods Enzymol; 2007; 428():373-96. PubMed ID: 17875430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the volumetric properties of proteins and other solutes using pressure perturbation calorimetry.
    Lin LN; Brandts JF; Brandts JM; Plotnikov V
    Anal Biochem; 2002 Mar; 302(1):144-60. PubMed ID: 11846388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force.
    Shimizu S; Chan HS
    Proteins; 2002 Dec; 49(4):560-6. PubMed ID: 12402364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism.
    O'Brien EP; Dima RI; Brooks B; Thirumalai D
    J Am Chem Soc; 2007 Jun; 129(23):7346-53. PubMed ID: 17503819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcalorimetric study of thermal unfolding of lysozyme in water/glycerol mixtures: an analysis by solvent exchange model.
    Spinozzi F; Ortore MG; Sinibaldi R; Mariani P; Esposito A; Cinelli S; Onori G
    J Chem Phys; 2008 Jul; 129(3):035101. PubMed ID: 18647045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cation and strong co-solute effects on protein kinetic stability.
    Broering JM; Bommarius AS
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1602-5. PubMed ID: 18031274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrodynamic pressure modulation of protein stability in cosolvents.
    Damodaran S
    Biochemistry; 2013 Nov; 52(46):8363-73. PubMed ID: 24156352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Heat capacity of hydrated and dehydrated globular proteins. The denaturing increment of heat capacity].
    Sochava IV; Smirnova OI
    Mol Biol (Mosk); 1993; 27(2):348-57. PubMed ID: 8487767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure perturbation calorimetric studies of the solvation properties and the thermal unfolding of proteins in solution--experiments and theoretical interpretation.
    Mitra L; Smolin N; Ravindra R; Royer C; Winter R
    Phys Chem Chem Phys; 2006 Mar; 8(11):1249-65. PubMed ID: 16633605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for determining the constant-pressure heat capacity change associated with the protein denaturation induced by guanidinium chloride (or urea).
    Singh R; Ali Dar T; Ahmad S; Moosavi-Movahedi AA; Ahmad F
    Biophys Chem; 2008 Mar; 133(1-3):81-9. PubMed ID: 18201812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nonpolar solutes on the thermodynamic response functions of aqueous mixtures.
    Chatterjee S; Ashbaugh HS; Debenedetti PG
    J Chem Phys; 2005 Oct; 123(16):164503. PubMed ID: 16268708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential interactions of glycine betaine and of urea with DNA: implications for DNA hydration and for effects of these solutes on DNA stability.
    Hong J; Capp MW; Anderson CF; Saecker RM; Felitsky DJ; Anderson MW; Record MT
    Biochemistry; 2004 Nov; 43(46):14744-58. PubMed ID: 15544345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropy and enthalpy convergence of hydrophobic solvation beyond the hard-sphere limit.
    Sedlmeier F; Horinek D; Netz RR
    J Chem Phys; 2011 Feb; 134(5):055105. PubMed ID: 21303165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure perturbation calorimetry of helical peptides.
    Barrett DG; Minder CM; Mian MU; Whittington SJ; Cooper WJ; Fuchs KM; Tripathy A; Waters ML; Creamer TP; Pielak GJ
    Proteins; 2006 May; 63(2):322-6. PubMed ID: 16372358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and interaction in aqueous urea-trimethylamine-N-oxide solutions.
    Paul S; Patey GN
    J Am Chem Soc; 2007 Apr; 129(14):4476-82. PubMed ID: 17373796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urea-amide preferential interactions in water: quantitative comparison of model compound data with biopolymer results using water accessible surface areas.
    Cannon JG; Anderson CF; Record MT
    J Phys Chem B; 2007 Aug; 111(32):9675-85. PubMed ID: 17658791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling Gibbs energies of solution for a non-polar solute in aqueous solutions of the protein stabilizers glycerol and ethylene glycol.
    Carrillo-Nava E; Dohnal V; Costas M
    Biophys Chem; 2004 Jan; 107(1):19-24. PubMed ID: 14871597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of hydrophobic effect by cosolutes.
    Di Michele A; Freda M; Onori G; Paolantoni M; Santucci A; Sassi P
    J Phys Chem B; 2006 Oct; 110(42):21077-85. PubMed ID: 17048929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.