These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 14971929)

  • 1. Determination of the glycosidic bond angle chi in RNA from cross-correlated relaxation of CH dipolar coupling and N chemical shift anisotropy.
    Duchardt E; Richter C; Ohlenschläger O; Görlach M; Wöhnert J; Schwalbe H
    J Am Chem Soc; 2004 Feb; 126(7):1962-70. PubMed ID: 14971929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into the CSA tensors of nucleobase carbons in RNA polynucleotides from solution measurements of residual CSA: towards new long-range orientational constraints.
    Hansen AL; Al-Hashimi HM
    J Magn Reson; 2006 Apr; 179(2):299-307. PubMed ID: 16431143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative gamma-HCNCH: determination of the glycosidic torsion angle chi in RNA oligonucleotides from the analysis of CH dipolar cross-correlated relaxation by solution NMR spectroscopy.
    Rinnenthal J; Richter C; Ferner J; Duchardt E; Schwalbe H
    J Biomol NMR; 2007 Sep; 39(1):17-29. PubMed ID: 17641824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative 2D and 3D Gamma-HCP experiments for the determination of the angles alpha and zeta in the phosphodiester backbone of oligonucleotides.
    Nozinovic S; Richter C; Rinnenthal J; Fürtig B; Duchardt-Ferner E; Weigand JE; Schwalbe H
    J Am Chem Soc; 2010 Aug; 132(30):10318-29. PubMed ID: 20614918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the backbone torsion psi angle by tensor correlation of chemical shift anisotropy and heteronuclear dipole-dipole interaction.
    Mou Y; Tsai TW; Chan JC
    Solid State Nucl Magn Reson; 2007 Apr; 31(2):72-81. PubMed ID: 17329083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-state NMR and quantum chemical investigations of 13Calpha shielding tensor magnitudes and orientations in peptides: determining phi and psi torsion angles.
    Wi S; Sun H; Oldfield E; Hong M
    J Am Chem Soc; 2005 May; 127(17):6451-8. PubMed ID: 15853353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy.
    Wylie BJ; Franks WT; Rienstra CM
    J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements.
    Ying J; Grishaev A; Bryce DL; Bax A
    J Am Chem Soc; 2006 Sep; 128(35):11443-54. PubMed ID: 16939267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of ribose carbon chemical shift tensors for A-form RNA by liquid crystal NMR spectroscopy.
    Bryce DL; Grishaev A; Bax A
    J Am Chem Soc; 2005 May; 127(20):7387-96. PubMed ID: 15898787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of 13C NMR chemical shifts on conformations of rna nucleosides and nucleotides.
    Ebrahimi M; Rossi P; Rogers C; Harbison GS
    J Magn Reson; 2001 May; 150(1):1-9. PubMed ID: 11330976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-correlated relaxation for the measurement of angles between tensorial interactions.
    Reif B; Diener A; Hennig M; Maurer M; Griesinger C
    J Magn Reson; 2000 Mar; 143(1):45-68. PubMed ID: 10698646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the mobility of methyl-bearing side chains in proteins from (3)J(CC) and (3)J(CN) couplings.
    Chou JJ; Case DA; Bax A
    J Am Chem Soc; 2003 Jul; 125(29):8959-66. PubMed ID: 12862493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross-correlated relaxation in NMR spectroscopy.
    Loth K; Pelupessy P; Bodenhausen G
    J Am Chem Soc; 2005 Apr; 127(16):6062-8. PubMed ID: 15839707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the dynamic nature of DNA duplex structure via analysis of nuclear Overhauser effect intensities.
    Tonelli M; James TL
    Biochemistry; 1998 Aug; 37(33):11478-87. PubMed ID: 9708983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separating structure and dynamics in CSA/DD cross-correlated relaxation: a case study on trehalose and ubiquitin.
    Kövér KE; Batta G
    J Magn Reson; 2001 Jun; 150(2):137-46. PubMed ID: 11384172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity-enhanced MQ-HCN-CCH-TOCSY and MQ-HCN-CCH-COSY pulse schemes for (13)C/(15)N labeled RNA oligonucleotides.
    Hu W; Jiang L; Gosser YQ
    J Magn Reson; 2000 Jul; 145(1):147-51. PubMed ID: 10873506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sugar pucker modulates the cross-correlated relaxation rates across the glycosidic bond in DNA.
    Sychrovský V; Müller N; Schneider B; Smrecki V; Spirko V; Sponer J; Trantírek L
    J Am Chem Soc; 2005 Oct; 127(42):14663-7. PubMed ID: 16231919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientation of the crotonaldehyde-derived N2-[3-Oxo-1(S)-methyl-propyl]-dG DNA adduct hinders interstrand cross-link formation in the 5'-CpG-3' sequence.
    Cho YJ; Wang H; Kozekov ID; Kozekova A; Kurtz AJ; Jacob J; Voehler M; Smith J; Harris TM; Rizzo CJ; Lloyd RS; Stone MP
    Chem Res Toxicol; 2006 Aug; 19(8):1019-29. PubMed ID: 16918240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy.
    Helmus JJ; Nadaud PS; Höfer N; Jaroniec CP
    J Chem Phys; 2008 Feb; 128(5):052314. PubMed ID: 18266431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multidimensional solid state NMR of anisotropic interactions in peptides and proteins.
    Wylie BJ; Rienstra CM
    J Chem Phys; 2008 Feb; 128(5):052207. PubMed ID: 18266412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.