These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 14972024)

  • 1. Mitochondrial calcium transport systems: properties, regulation, and taxonomic features.
    Deryabina YI; Isakova EP; Zvyagilskaya RA
    Biochemistry (Mosc); 2004 Jan; 69(1):91-102. PubMed ID: 14972024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of mitochondrial calcium uptake rather than efflux impedes calcium release by inositol-1,4,5-trisphosphate-sensitive receptors.
    Chalmers S; McCarron JG
    Cell Calcium; 2009 Aug; 46(2):107-13. PubMed ID: 19577805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fateful encounter of mitochondria with calcium: how did it happen?
    Carafoli E
    Biochim Biophys Acta; 2010; 1797(6-7):595-606. PubMed ID: 20385096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium uptake mechanisms of mitochondria.
    Santo-Domingo J; Demaurex N
    Biochim Biophys Acta; 2010; 1797(6-7):907-12. PubMed ID: 20079335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial calcium homeostasis: mechanisms and molecules.
    Vandecasteele G; Szabadkai G; Rizzuto R
    IUBMB Life; 2001; 52(3-5):213-9. PubMed ID: 11798035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial Ca2+ Transport: Mechanisms, Molecular Structures, and Role in Cells.
    Belosludtsev KN; Dubinin MV; Belosludtseva NV; Mironova GD
    Biochemistry (Mosc); 2019 Jun; 84(6):593-607. PubMed ID: 31238859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of adrenergic agonists and mitochondrial energy state on the Ca2+ transport systems of mitochondria.
    Goldstone TP; Roos I; Crompton M
    Biochemistry; 1987 Jan; 26(1):246-54. PubMed ID: 2950922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of calcium by mitochondria: transport and possible function.
    Gunter TE; Gunter KK
    IUBMB Life; 2001; 52(3-5):197-204. PubMed ID: 11798033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial VDAC, the Na
    Shoshan-Barmatz V; De S
    Adv Exp Med Biol; 2017; 981():323-347. PubMed ID: 29594867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Ca2+ transport mechanisms of mitochondria and Ca2+ uptake from physiological-type Ca2+ transients.
    Gunter TE; Buntinas L; Sparagna GC; Gunter KK
    Biochim Biophys Acta; 1998 Aug; 1366(1-2):5-15. PubMed ID: 9714709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms by which mitochondria transport calcium.
    Gunter TE; Pfeiffer DR
    Am J Physiol; 1990 May; 258(5 Pt 1):C755-86. PubMed ID: 2185657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The role of mitochondrial uniporter in calcium-homeostasis of the exorbital lacrimal gland secretory cells].
    Kotliarova AB; Merlavs'kyĭ VM; Dorosh OM; Man'ko VV
    Fiziol Zh (1994); 2014; 60(5):73-81. PubMed ID: 25566673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of mitochondrial Ca2+ transport mediated by three transport proteins: VDAC1, the Na+/Ca2+ exchanger, and the Ca2+ uniporter.
    Ben-Hail D; Palty R; Shoshan-Barmatz V
    Cold Spring Harb Protoc; 2014 Feb; 2014(2):161-6. PubMed ID: 24492769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues.
    Crompton M; Moser R; Lüdi H; Carafoli E
    Eur J Biochem; 1978 Jan; 82(1):25-31. PubMed ID: 23291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mitochondrial calcium uniporter is a highly selective ion channel.
    Kirichok Y; Krapivinsky G; Clapham DE
    Nature; 2004 Jan; 427(6972):360-4. PubMed ID: 14737170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+ transport and oxidative damage of mitochondria.
    Vercesi AE
    Braz J Med Biol Res; 1993 May; 26(5):441-57. PubMed ID: 8257933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms.
    Nicholls DG; Scott ID
    Biochem J; 1980 Mar; 186(3):833-9. PubMed ID: 7396840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondria and calcium signaling.
    Nicholls DG
    Cell Calcium; 2005; 38(3-4):311-7. PubMed ID: 16087232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+-release pathways from mitochondria of the yeast Endomyces magnusii.
    Deryabina YI; Bazhenova EN; Zvyagilskaya RA
    Biochemistry (Mosc); 2000 Oct; 65(10):1167-74. PubMed ID: 11092960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estradiol affect Na-dependent Ca2+ efflux from synaptosomal mitochondria.
    Horvat A; Petrović S; Nedeljković N; Martinović JV; Nikezić G
    Gen Physiol Biophys; 2000 Mar; 19(1):59-71. PubMed ID: 10930139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.