BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 14972026)

  • 1. Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilized plant mitochondria.
    Johansson FI; Michalecka AM; Møller IM; Rasmusson AG
    Biochem J; 2004 May; 380(Pt 1):193-202. PubMed ID: 14972026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of calcium ions and inhibitors on internal NAD(P)H dehydrogenases in plant mitochondria.
    Rasmusson AG; Møller IM
    Eur J Biochem; 1991 Dec; 202(2):617-23. PubMed ID: 1722151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimycin A treatment decreases respiratory internal rotenone-insensitive NADH oxidation capacity in potato leaves.
    Geisler DA; Johansson FI; Svensson AS; Rasmusson AG
    BMC Plant Biol; 2004 May; 4():8. PubMed ID: 15140267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alamethicin permeabilizes the plasma membrane and mitochondria but not the tonoplast in tobacco (Nicotiana tabacum L. cv Bright Yellow) suspension cells.
    Matic S; Geisler DA; Møller IM; Widell S; Rasmusson AG
    Biochem J; 2005 Aug; 389(Pt 3):695-704. PubMed ID: 15836437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct evidence for the presence of two external NAD(P)H dehydrogenases coupled to the electron transport chain in plant mitochondria.
    Roberts TH; Fredlund KM; Møller IM
    FEBS Lett; 1995 Oct; 373(3):307-9. PubMed ID: 7589489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of NADH channeling in coupled reaction of mitochondrial malate dehydrogenase and complex I in alamethicin-permeabilized rat liver mitochondria.
    Kotlyar AB; Maklashina E; Cecchini G
    Biochem Biophys Res Commun; 2004 Jun; 318(4):987-91. PubMed ID: 15147970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-dependent gene expression for proteins in the respiratory chain of potato leaves.
    Svensson AS; Rasmusson AG
    Plant J; 2001 Oct; 28(1):73-82. PubMed ID: 11696188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of external and internal NAD(P)H dehydrogenases in Hoya carnosa mitochondria.
    Hong HT; Nose A
    J Bioenerg Biomembr; 2012 Dec; 44(6):655-64. PubMed ID: 22945465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolated durum wheat and potato cell mitochondria oxidize externally added NADH mostly via the malate/oxaloacetate shuttle with a rate that depends on the carrier-mediated transport.
    Pastore D; Di Pede S; Passarella S
    Plant Physiol; 2003 Dec; 133(4):2029-39. PubMed ID: 14671011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct oxidation of NADPH by submitochondrial particles from Saccharomyces cerevisiae.
    Djavadi FH; Moradi M; Djavadi-Ohaniance L
    Eur J Biochem; 1980 Jun; 107(2):501-4. PubMed ID: 6995121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NAD(P)H-ubiquinone oxidoreductases in plant mitochondria.
    Møller IM; Rasmusson AG; Fredlund KM
    J Bioenerg Biomembr; 1993 Aug; 25(4):377-84. PubMed ID: 8226719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two separate transhydrogenase activities are present in plant mitochondria.
    Bykova NV; Rasmusson AG; Igamberdiev AU; Gardeström P; Møller IM
    Biochem Biophys Res Commun; 1999 Nov; 265(1):106-11. PubMed ID: 10548498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence.
    Danylovych HV
    Ukr Biochem J; 2016; 88(1):31-43. PubMed ID: 29227076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of a 43-kDa rotenone-insensitive NADH dehydrogenase from plant mitochondria.
    Menz RI; Day DA
    J Biol Chem; 1996 Sep; 271(38):23117-20. PubMed ID: 8798503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ assay of the intramitochondrial enzymes: use of alamethicin for permeabilization of mitochondria.
    Gostimskaya IS; Grivennikova VG; Zharova TV; Bakeeva LE; Vinogradov AD
    Anal Biochem; 2003 Feb; 313(1):46-52. PubMed ID: 12576057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide degradation by potato tuber mitochondria: evidence for the involvement of external NAD(P)H dehydrogenases.
    de Oliveira HC; Wulff A; Saviani EE; Salgado I
    Biochim Biophys Acta; 2008 May; 1777(5):470-6. PubMed ID: 18371295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism.
    Rustin P; Lance C
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris.
    Liu YJ; Norberg FE; Szilágyi A; De Paepe R; Akerlund HE; Rasmusson AG
    Plant Cell Physiol; 2008 Feb; 49(2):251-63. PubMed ID: 18182402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.