These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 14972609)

  • 1. Temperature and pressure dependence of quercetin-3-O-palmitate interaction with a model phospholipid membrane: film balance and scanning probe microscopy study.
    Sardone L; Pignataro B; Castelli F; Sarpietro MG; Nicolosi G; Marletta G
    J Colloid Interface Sci; 2004 Mar; 271(2):329-35. PubMed ID: 14972609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maxwell displacement current allows to study structural changes of gramicidin A in monolayers at the air-water interface.
    Vitovic P; Weis M; Tomcík P; Cirák J; Hianik T
    Bioelectrochemistry; 2007 May; 70(2):469-80. PubMed ID: 16938494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes.
    Zhao L; Feng SS
    J Colloid Interface Sci; 2004 Jun; 274(1):55-68. PubMed ID: 15120278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air-water interface.
    Mansour HM; Zografi G
    Langmuir; 2007 Mar; 23(7):3809-19. PubMed ID: 17323986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of formation of vesicle fused phospholipid monolayers on alkanethiol self-assembled monolayer supports.
    Woodward JT; Meuse CW
    J Colloid Interface Sci; 2009 Jun; 334(2):139-45. PubMed ID: 19406419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An atomic force microscope study of thermal behavior of phospholipid monolayers on mica.
    Luo MF; Yeh YL; Chen PL; Nien CH; Hsueh YW
    J Chem Phys; 2006 May; 124(19):194702. PubMed ID: 16729829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal expansion of microstructured DMPC bilayers quantified by temperature-controlled atomic force microscopy.
    Schuy S; Janshoff A
    Chemphyschem; 2006 Jun; 7(6):1207-10. PubMed ID: 16676368
    [No Abstract]   [Full Text] [Related]  

  • 8. Surface thermodynamic properties of monolayers versus reconstitution of a membrane protein in solid-supported bilayers.
    Merino S; Domènech O; Díez-Pérez I; Sanz F; Montero MT; Hernández-Borrell J
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):93-8. PubMed ID: 16023838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dibucaine effects on structural and elastic properties of lipid bilayers.
    Lorite GS; Nobre TM; Zaniquelli ME; de Paula E; Cotta MA
    Biophys Chem; 2009 Feb; 139(2-3):75-83. PubMed ID: 19010585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of monolayers and bilayer foam films from lamellar, inverted hexagonal and cubic lipid phases.
    Jordanova A; Lalchev Z; Tenchov B
    Eur Biophys J; 2003 Feb; 31(8):626-32. PubMed ID: 12582822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared reflection absorption spectroscopy coupled with Brewster angle microscopy for studying interactions of amphiphilic triblock copolymers with phospholipid monolayers.
    Amado E; Kerth A; Blume A; Kressler J
    Langmuir; 2008 Sep; 24(18):10041-53. PubMed ID: 18698867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural organization of DMPC lipid layers on chemically micropatterned self-assembled monolayers as biomimetic systems.
    Brechling A; Pohl M; Kleineberg U; Heinzmann U
    J Biotechnol; 2004 Aug; 112(1-2):115-25. PubMed ID: 15288947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of perfluorinated compounds on the properties of model lipid membranes.
    Matyszewska D; Tappura K; Orädd G; Bilewicz R
    J Phys Chem B; 2007 Aug; 111(33):9908-18. PubMed ID: 17672485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipation-enhanced quartz crystal microbalance studies on the experimental parameters controlling the formation of supported lipid bilayers.
    Seantier B; Breffa C; Félix O; Decher G
    J Phys Chem B; 2005 Nov; 109(46):21755-65. PubMed ID: 16853826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical studies of the interaction of the lipoheptapeptide surfactin with lipid bilayers of L-alpha-dimyristoyl phosphatidylcholine.
    Kell H; Holzwarth JF; Boettcher C; Heenan RK; Vater J
    Biophys Chem; 2007 Jul; 128(2-3):114-24. PubMed ID: 17383076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subgel studies of dimyristoylphosphatidylcholine bilayers.
    Chang HH; Bhagat RK; Tran R; Dea P
    J Phys Chem B; 2006 Nov; 110(44):22192-6. PubMed ID: 17078657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclodextrin-induced lipid lateral separation in DMPC membranes: (2)H nuclear magnetic resonance study.
    Roux M; Auzely-Velty R; Djedaini-Pilard F; Perly B
    Biophys J; 2002 Feb; 82(2):813-22. PubMed ID: 11806923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Langmuir monolayer study of the interaction of E1(145-162) hepatitis G virus peptide with phospholipid membranes.
    Sánchez-Martín MJ; Haro I; Alsina MA; Busquets MA; Pujol M
    J Phys Chem B; 2010 Jan; 114(1):448-56. PubMed ID: 20000622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparisons of the interaction of propranolol and timolol with model and biological membrane systems.
    Herbette L; Katz AM; Sturtevant JM
    Mol Pharmacol; 1983 Sep; 24(2):259-69. PubMed ID: 6888369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the in situ structural and interfacial properties of the cationic hydrophobic heteropolypeptide, KL4, in lung surfactant bilayer and monolayer models at the air-water interface: implications for pulmonary surfactant delivery.
    Mansour HM; Damodaran S; Zografi G
    Mol Pharm; 2008; 5(5):681-95. PubMed ID: 18630875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.