These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 14972820)

  • 1. Root growth in Sitka spruce and Douglas-fir transplants: dependence on the shoot and stored carbohydrates.
    Philipson JJ
    Tree Physiol; 1988 Jun; 4(2):101-8. PubMed ID: 14972820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Climate on Douglas-fir (
    Levanič T; Štraus H
    Plants (Basel); 2022 Jun; 11(12):. PubMed ID: 35736722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root and shoot growth, assimilate partitioning and cell proliferation in roots of Sitka spruce (Picea sitchensis) grown in filtered and unfiltered chambers.
    Bambridge L; Harmer R; Macleod R
    Environ Pollut; 1996; 92(3):343-7. PubMed ID: 15091387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings.
    Smit J; Van Den Driessche R
    Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature effects on nitrogen form uptake by seedling roots of three contrasting conifers.
    Boczulak SA; Hawkins BJ; Roy R
    Tree Physiol; 2014 May; 34(5):513-23. PubMed ID: 24831958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene-dependent induced conifer defense. Full-length cDNA cloning of a multigene family, differential constitutive, and wound- and insect-induced expression, and cellular and subcellular localization in spruce and Douglas fir.
    Ralph SG; Hudgins JW; Jancsik S; Franceschi VR; Bohlmann J
    Plant Physiol; 2007 Jan; 143(1):410-24. PubMed ID: 17122070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of Picea, Pinus and Pseudotsuga roots to heterogeneous nutrient distribution in soil.
    George E; Seith B; Schaeffer C; Marschner H
    Tree Physiol; 1997 Jan; 17(1):39-45. PubMed ID: 14759912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycorrhizal effects on potassium fluxes by northwest coniferous seedlings.
    Rygiewicz PT; Bledsoe CS
    Plant Physiol; 1984 Dec; 76(4):918-23. PubMed ID: 16663971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of artificial and western spruce budworm (Lepidoptera: Tortricidae) defoliation on growth and biomass allocation of Douglas-fir seedlings.
    Chen Z; Kolb TE; Clancy KM
    J Econ Entomol; 2002 Jun; 95(3):587-94. PubMed ID: 12076004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of short-term ozone exposure on the carbon economy of mature and juvenile Douglas firs [Pseudotsuga menziesii (Mirb.) Franco].
    Smeulders SM; Gorissen A; Joosten NN; VAN Veen JA
    New Phytol; 1995 Jan; 129(1):45-53. PubMed ID: 33874420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany.
    Vitali V; Büntgen U; Bauhus J
    Glob Chang Biol; 2017 Dec; 23(12):5108-5119. PubMed ID: 28556403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freezing tolerance of conifer seeds and germinants.
    Hawkins BJ; Guest HJ; Kolotelo D
    Tree Physiol; 2003 Dec; 23(18):1237-46. PubMed ID: 14652223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of a chitinase-like protein in the roots of Douglas-fir trees infected with Armillaria ostoyae and Phellinus weirii.
    Robinson RM; Sturrock RN; Davidson JJ; Ekramoddoullah AK; Morrison DJ
    Tree Physiol; 2000 Apr; 20(8):493-502. PubMed ID: 12651429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthetic action spectra of trees: I. Comparative photosynthetic action spectra of one deciduous and four coniferous tree species as related to photorespiration and pigment complements.
    Clark JB; Lister GR
    Plant Physiol; 1975 Feb; 55(2):401-6. PubMed ID: 16659091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthetic Action Spectra of Trees: II. The Relationship of Cuticle Structure to the Visible and Ultraviolet Spectral Properties of Needles from Four Coniferous Species.
    Clark JB; Lister GR
    Plant Physiol; 1975 Feb; 55(2):407-13. PubMed ID: 16659092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New root growth of Douglas-fir seedlings at low carbon dioxide concentration.
    Van Den Driessche R
    Tree Physiol; 1991 Apr; 8(3):289-95. PubMed ID: 14972879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Douglas-fir and western larch: chemical and physical properties in relation to Douglas-fir bark beetle attack.
    Reed AN; Hanover JW; Furniss MM
    Tree Physiol; 1986 Dec; 1(3):277-87. PubMed ID: 14975882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiology and morphology of Douglas-fir rooted cuttings compared to seedlings and transplants.
    Ritchie GA; Tanaka Y; Duke SD
    Tree Physiol; 1992 Mar; 10(2):179-94. PubMed ID: 14969868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Storage and internal cycling of nitrogen in relation to seasonal growth of Sitka spruce.
    Millard P; Proe MF
    Tree Physiol; 1992 Jan; 10(1):33-43. PubMed ID: 14969873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nitrogen source on growth and activity of nitrogen-assimilating enzymes in Douglas-fir seedlings.
    Bedell JP; Chalot M; Garnier A; Botton B
    Tree Physiol; 1999 Mar; 19(3):205-210. PubMed ID: 12651584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.