These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 14972866)

  • 1. Performance of a canopy light interception model for conifer shoots, trees and stands.
    Oker-Blom P; Kaufmann MR; Ryan MG
    Tree Physiol; 1991; 9(1_2):227-243. PubMed ID: 14972866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of light interception properties of conifer shoots by an improved photographic method and a 3D model of shoot structure.
    Thérézien M; Palmroth S; Brady R; Oren R
    Tree Physiol; 2007 Oct; 27(10):1375-87. PubMed ID: 17669728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural scaling of light interception efficiency in Picea engelmannii and Abies lasiocarpa.
    Hemmerlein MT; Smith WK
    Tree Physiol; 1994 Oct; 14(10):1139-48. PubMed ID: 14967624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiographic, stand, and environmental effects on individual tree growth and growth efficiency in subalpine forests.
    Kaufmann MR; Ryan MG
    Tree Physiol; 1986 Dec; 2(1_2_3):47-59. PubMed ID: 14975841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fertilization has little effect on light-interception efficiency of Picea abies shoots.
    Palmroth S; Stenberg P; Smolander S; Voipio P; Smolander H
    Tree Physiol; 2002 Nov; 22(15-16):1185-92. PubMed ID: 12414378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulations of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies.
    Stenberg P
    Tree Physiol; 1996; 16(1_2):99-108. PubMed ID: 14871752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany.
    Köstner B; Falge E; Tenhunen JD
    Tree Physiol; 2002 Jun; 22(8):567-74. PubMed ID: 12045028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of light interception efficiency of Scots pine shoots on structural parameters.
    Smolander H; Stenberg P; Linder S
    Tree Physiol; 1994; 14(7_9):971-980. PubMed ID: 14967663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light interception and partitioning between shoots in apple cultivars influenced by training.
    Stephan J; Sinoquet H; Donès N; Haddad N; Talhouk S; Lauri PE
    Tree Physiol; 2008 Mar; 28(3):331-42. PubMed ID: 18171657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. To live fast or not: growth, vigor and longevity of old-growth ponderosa pine and lodgepole pine trees.
    Kaufmann MR
    Tree Physiol; 1996; 16(1_2):139-144. PubMed ID: 14871757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of foliage distribution and leaf functions to light interception, transpiration and photosynthetic capacities in two apple cultivars at branch and tree scales.
    Massonnet C; Regnard JL; Lauri PE; Costes E; Sinoquet H
    Tree Physiol; 2008 May; 28(5):665-78. PubMed ID: 18316299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests.
    Nelson KN; Turner MG; Romme WH; Tinker DB
    Ecol Appl; 2016 Dec; 26(8):2422-2436. PubMed ID: 27875007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine.
    Chmura DJ; Tjoelker MG
    Tree Physiol; 2008 May; 28(5):729-42. PubMed ID: 18316305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing light interception with stand basal area for predicting tree growth.
    Courbaud B
    Tree Physiol; 2000 Mar; 20(5_6):407-414. PubMed ID: 12651456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of high- and low-vigor lodgepole pine trees in old-growth stands.
    Kaufmann MR; Watkins RK
    Tree Physiol; 1990 Dec; 7(1_2_3_4):239-246. PubMed ID: 14972921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of the LAI-2000 plant canopy analyzer in estimating leaf area index of some Scots pine stands.
    Stenberg P; Linder S; Smolander H; Flower-Ellis J
    Tree Physiol; 1994; 14(7_9):981-995. PubMed ID: 14967664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the sensitivity of absorbed light and incident light profile to various canopy architecture and stand conditions.
    Kim HS; Palmroth S; Thérézien M; Stenberg P; Oren R
    Tree Physiol; 2011 Jan; 31(1):30-47. PubMed ID: 21389000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crown architecture of understory and open-grown white pine (Pinus strobus L.) saplings.
    O'Connell BM; Kelty MJ
    Tree Physiol; 1994 Jan; 14(1):89-102. PubMed ID: 14967636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance.
    Lilles EB; Astrup R; Lefrançois ML; David Coates K
    Tree Physiol; 2014 Dec; 34(12):1334-47. PubMed ID: 25422385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of the method of leaf area measurement to the interpretation of gas exchange of complex shoots.
    Smith WK; Schoettle AW; Cui M
    Tree Physiol; 1991 Mar; 8(2):121-7. PubMed ID: 14972884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.