These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 14972882)
1. Fall lifting and long-term freezer storage of ponderosa pine seedlings: effects on post-storage leaf water potential, stomatal conductance, and root growth potential. Omi SK; Yoder B; Rose R Tree Physiol; 1991 Apr; 8(3):315-25. PubMed ID: 14972882 [TBL] [Abstract][Full Text] [Related]
2. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution. Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263 [TBL] [Abstract][Full Text] [Related]
3. Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine-oak forest. Kolb TE; Stone JE Tree Physiol; 2000 Jan; 20(1):1-12. PubMed ID: 12651521 [TBL] [Abstract][Full Text] [Related]
4. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings. Smit J; Van Den Driessche R Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945 [TBL] [Abstract][Full Text] [Related]
5. Effects of dessication on post-planting stress in bare-root Corsican pine seedlings. Girard S; Clement A; Cochard H; Boulet-Gercourt B; Guehl JM Tree Physiol; 1997 Jul; 17(7):429-35. PubMed ID: 14759834 [TBL] [Abstract][Full Text] [Related]
6. Carbon allocation, gas exchange, and needle morphology of Pinus ponderosa genotypes known to differ in growth and survival under imposed drought. Cregg BM Tree Physiol; 1994; 14(7_9):883-898. PubMed ID: 14967656 [TBL] [Abstract][Full Text] [Related]
7. Expression of functional traits during seedling establishment in two populations of Pinus ponderosa from contrasting climates. Kerr KL; Meinzer FC; McCulloh KA; Woodruff DR; Marias DE Tree Physiol; 2015 May; 35(5):535-48. PubMed ID: 25934987 [TBL] [Abstract][Full Text] [Related]
8. Response of stomatal conductance to drought in ponderosa pine: implications for carbon and ozone uptake. Panek JA; Goldstein AH Tree Physiol; 2001 Mar; 21(5):337-44. PubMed ID: 11262925 [TBL] [Abstract][Full Text] [Related]
9. Water relations and gas exchange of Acer saccharum seedlings in contrasting natural light and water regimes. Ellsworth DS; Reich PB Tree Physiol; 1992 Jan; 10(1):1-20. PubMed ID: 14969871 [TBL] [Abstract][Full Text] [Related]
10. Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa. Simonin K; Kolb TE; Montes-Helu M; Koch GW Tree Physiol; 2006 Apr; 26(4):493-503. PubMed ID: 16414928 [TBL] [Abstract][Full Text] [Related]
11. Influence of drought stress and low irradiance on plant water relations and structural constituents in needles of Pinus ponderosa seedlings. Vance NC; Zaerr JB Tree Physiol; 1991 Mar; 8(2):175-84. PubMed ID: 14972888 [TBL] [Abstract][Full Text] [Related]
12. Xylem vulnerability to cavitation in Pseudotsuga menziesii and Pinus ponderosa from contrasting habitats. Stout DH; Sala A Tree Physiol; 2003 Jan; 23(1):43-50. PubMed ID: 12511303 [TBL] [Abstract][Full Text] [Related]
13. Influence of climate-driven shifts in biomass allocation on water transport and storage in ponderosa pine. Maherali H; DeLucia EH Oecologia; 2001 Dec; 129(4):481-491. PubMed ID: 24577687 [TBL] [Abstract][Full Text] [Related]
14. High temperature and drought stress effects on survival of Pinus ponderosa seedlings. Kolb PF; Robberecht R Tree Physiol; 1996 Aug; 16(8):665-72. PubMed ID: 14871688 [TBL] [Abstract][Full Text] [Related]
15. Stomatal conductance, growth and root signaling in Betula pendula seedlings subjected to partial soil drying. Fort C; Muller F; Label P; Granier A; Dreyer E Tree Physiol; 1998 Nov; 18(11):769-776. PubMed ID: 12651411 [TBL] [Abstract][Full Text] [Related]
16. Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem. Otieno DO; Schmidt MW; Kurz-Besson C; Lobo Do Vale R; Pereira JS; Tenhunen JD Tree Physiol; 2007 Aug; 27(8):1179-87. PubMed ID: 17472943 [TBL] [Abstract][Full Text] [Related]
17. Carbon isotopic composition, gas exchange, and growth of three populations of ponderosa pine differing in drought tolerance. Zhang JW; Feng Z; Cregg BM; Schumann CM Tree Physiol; 1997 Jul; 17(7):461-6. PubMed ID: 14759838 [TBL] [Abstract][Full Text] [Related]
19. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season. Sala A; Peters GD; McIntyre LR; Harrington MG Tree Physiol; 2005 Mar; 25(3):339-48. PubMed ID: 15631982 [TBL] [Abstract][Full Text] [Related]
20. Water stress responses of seedlings of four Mediterranean oak species. Fotelli MN; Radoglou KM; Constantinidou HI Tree Physiol; 2000 Oct; 20(16):1065-75. PubMed ID: 11269958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]