These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 14972894)

  • 21. Impact of eastern dwarf mistletoe (Arceuthobium pusillum) infection on the needles of red spruce (Picea rubens) and white spruce (Picea glauca): oxygen exchange, morphology and composition.
    Reblin JS; Logan BA; Tissue DT
    Tree Physiol; 2006 Oct; 26(10):1325-32. PubMed ID: 16815834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Seasonal patterns of carbohydrate reserves in red spruce seedlings.
    Schaberg PG; Snyder MC; Shane JB; Donnelly JR
    Tree Physiol; 2000 Apr; 20(8):549-555. PubMed ID: 12651436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spruce-fir forest changes during a 30-year nitrogen saturation experiment.
    McNulty SG; Boggs JL; Aber JD; Rustad LE
    Sci Total Environ; 2017 Dec; 605-606():376-390. PubMed ID: 28668749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accretion, partitioning and sequestration of calcium and aluminum in red spruce foliage: implications for tree health.
    Borer CH; Schaberg PG; DeHayes DH; Hawley GJ
    Tree Physiol; 2004 Sep; 24(9):929-39. PubMed ID: 15234890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of mist acidity and ambient ozone removal on montane red spruce.
    Vann DR; Strimbeck GR; Johnson AH
    Tree Physiol; 1995 Oct; 15(10):639-47. PubMed ID: 14965997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Whole-exome sequencing reveals a long-term decline in effective population size of red spruce (
    Capblancq T; Butnor JR; Deyoung S; Thibault E; Munson H; Nelson DM; Fitzpatrick MC; Keller SR
    Evol Appl; 2020 Oct; 13(9):2190-2205. PubMed ID: 33005218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest.
    Kueppers LM; Conlisk E; Castanha C; Moyes AB; Germino MJ; de Valpine P; Torn MS; Mitton JB
    Glob Chang Biol; 2017 Jun; 23(6):2383-2395. PubMed ID: 27976819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Desiccation, cryopreservation and water relations parameters of white spruce (Picea glauca) and interior spruce (Picea glauca x engelmannii complex) somatic embryos.
    Percy RE; Livingston NJ; Moran JA; Von Aderkas P
    Tree Physiol; 2001 Dec; 21(18):1303-10. PubMed ID: 11731340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon, water and nitrogen relations in evergreen and deciduous conifers.
    Matyssek R
    Tree Physiol; 1986 Dec; 2(1_2_3):177-187. PubMed ID: 14975852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acidic mist reduces foliar membrane-associated calcium and impairs stomatal responsiveness in red spruce.
    Borer CH; Schaberg PG; DeHayes DH
    Tree Physiol; 2005 Jun; 25(6):673-80. PubMed ID: 15805087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Freezing cycles enhance winter injury in Picea rubens.
    Lund AE; Livingston WH
    Tree Physiol; 1999 Jan; 19(1):65-69. PubMed ID: 12651334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ecophysiology and growth of advance red spruce and balsam fir regeneration after partial cutting in yellow birch-conifer stands.
    Dumais D; Prévost M
    Tree Physiol; 2008 Aug; 28(8):1221-9. PubMed ID: 18519253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of foliar N on foliar soluble sugars and starch of red spruce saplings exposed to ambient and elevated ozone.
    Amundson RG; Kohut RJ; Laurence JA
    Tree Physiol; 1995 Mar; 15(3):167-74. PubMed ID: 14965972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Competitive strategies in adult beech and spruce: space-related foliar carbon investment versus carbon gain.
    Reiter IM; Häberle KH; Nunn AJ; Heerdt C; Reitmayer H; Grote R; Matyssek R
    Oecologia; 2005 Dec; 146(3):337-49. PubMed ID: 16205957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of roots in winter water relations of Engelmann spruce saplings.
    Boyce RL; Lucero SA
    Tree Physiol; 1999 Nov; 19(13):893-898. PubMed ID: 10562407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection and quantification of changes in membrane-associated calcium in red spruce saplings exposed to acid fog.
    Jiang M; Jagels R
    Tree Physiol; 1999 Dec; 19(14):909-916. PubMed ID: 12651302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Minimum cuticular conductance and cuticle features of Picea abies and Pinus cembra needles along an altitudinal gradient in the Dolomites (NE Italian Alps).
    Anfodillo T; Pasqua di Bisceglie D; Urso T
    Tree Physiol; 2002 May; 22(7):479-87. PubMed ID: 11986051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An analysis of climate and competition as contributors to decline of red spruce in high elevation Appalachian forests of the Eastern United states.
    McLaughlin SB; Downing DJ; Blasing TJ; Cook ER; Adams HS
    Oecologia; 1987 Jul; 72(4):487-501. PubMed ID: 28312509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photosynthetic capacity, chloroplast pigments, and mineral content of the previous year's spruce needles with and without the new flush: analysis of the forest-decline phenomenon of needle bleaching.
    Lange OL; Zellner H; Gebel J; Schramel P; Köstner B; Czygan FC
    Oecologia; 1987 Sep; 73(3):351-357. PubMed ID: 28311515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aluminum-induced calcium deficiency syndrome in declining red spruce.
    Shortle WC; Smith KT
    Science; 1988 May; 240(4855):1017-8. PubMed ID: 17731713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.