These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 14972934)

  • 1. Bud dormancy in beech (Fagus sylvatica L.). Effect of chilling and photoperiod on dormancy release of beech seedlings.
    Falusi M; Calamassi R
    Tree Physiol; 1990 Dec; 6(4):429-38. PubMed ID: 14972934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens.
    Myking T; Heide OM
    Tree Physiol; 1995 Nov; 15(11):697-704. PubMed ID: 14965987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.
    Basler D; Körner C
    Tree Physiol; 2014 Apr; 34(4):377-88. PubMed ID: 24713858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bud burst timing in Picea abies seedlings as affected by temperature during dormancy induction and mild spells during chilling.
    Granhus A; Fløistad IS; Søgaard G
    Tree Physiol; 2009 Apr; 29(4):497-503. PubMed ID: 19203964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenols and bud dormancy I. Variations in total phenols and phenylalanine ammonia lyase activity in dormant buds of Fagus sylvatica L.
    Codignola A; Maffei M; Fieschi M
    New Phytol; 1988 Jan; 108(1):83-89. PubMed ID: 33873923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures.
    Viherä-Aarnio A; Sutinen S; Partanen J; Häkkinen R
    Tree Physiol; 2014 May; 34(5):547-56. PubMed ID: 24876293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological and physiological responses of beech (Fagus sylvatica) seedlings to grass-induced below ground competition.
    Coll L; Balandier P; Picon-Cochard C
    Tree Physiol; 2004 Jan; 24(1):45-54. PubMed ID: 14652213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climatic control of bud burst in young seedlings of nine provenances of Norway spruce.
    Søgaard G; Johnsen O; Nilsen J; Junttila O
    Tree Physiol; 2008 Feb; 28(2):311-20. PubMed ID: 18055441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoperiodic control of dormancy in Sedum telephium and some other herbaceous perennial plants.
    Heide OM
    Physiol Plant; 2001 Nov; 113(3):332-337. PubMed ID: 12060277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological, anatomical and DNA methylation changes of tree peony buds during chilling induced dormancy release.
    Xin H; Zhang Y; Wang X; Liu C; Feng W; Gai S
    Plant Physiol Biochem; 2019 Nov; 144():64-72. PubMed ID: 31561199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees.
    Borchert R; Rivera G
    Tree Physiol; 2001 Mar; 21(4):213-21. PubMed ID: 11276415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear.
    Heide OM; Prestrud AK
    Tree Physiol; 2005 Jan; 25(1):109-14. PubMed ID: 15519992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Warming Events Advance or Delay Spring Phenology by Affecting Bud Dormancy Depth in Trees.
    Malyshev AV
    Front Plant Sci; 2020; 11():856. PubMed ID: 32655599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bud dormancy release in elm (Ulmus spp.) clones--a case study of photoperiod and temperature responses.
    Ghelardini L; Santini A; Black-Samuelsson S; Myking T; Falusi M
    Tree Physiol; 2010 Feb; 30(2):264-74. PubMed ID: 20022864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of the soil on spring and autumn phenology in European beech.
    Arend M; Gessler A; Schaub M
    Tree Physiol; 2016 Jan; 36(1):78-85. PubMed ID: 26420791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoupling photo- and thermoperiod by projected climate change perturbs bud development, dormancy establishment and vernalization in the model tree Populus.
    Rinne PLH; Paul LK; van der Schoot C
    BMC Plant Biol; 2018 Oct; 18(1):220. PubMed ID: 30290771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species.
    Heide OM
    J Exp Bot; 2011 Nov; 62(15):5397-404. PubMed ID: 21862485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptome analysis of nonchilled, chilled, and late-pink bud reveals flowering pathway genes involved in chilling-mediated flowering in blueberry.
    Song GQ; Chen Q
    BMC Plant Biol; 2018 May; 18(1):98. PubMed ID: 29855262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of light and temperature of the CO
    Schulze ED
    Oecologia; 1972 Sep; 9(3):235-258. PubMed ID: 28313125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unigene set for European beech (Fagus sylvatica L.) and its use to decipher the molecular mechanisms involved in dormancy regulation.
    Lesur I; Bechade A; Lalanne C; Klopp C; Noirot C; Leplé JC; Kremer A; Plomion C; Le Provost G
    Mol Ecol Resour; 2015 Sep; 15(5):1192-204. PubMed ID: 25594128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.