These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 14972948)

  • 1. Effects of aluminum on growth and nutrient status of Douglas-fir seedlings grown in culture solution.
    Keltjens WG
    Tree Physiol; 1990 Jun; 6(2):165-75. PubMed ID: 14972948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings.
    Smit J; Van Den Driessche R
    Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrition and bud removal affect biomass and nutrient allocation in Douglas-fir and western red cedar.
    Hawkins BJ; Henry G
    Tree Physiol; 1999 Mar; 19(3):197-203. PubMed ID: 12651583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomass and nutrient allocation in Douglas-fir and amabilis fir seedlings: influence of growth rate and nutrition.
    Hawkins BJ; Henry G; Kiiskila SB
    Tree Physiol; 1998 Dec; 18(12):803-810. PubMed ID: 12651401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and distribution of calcium and phosphorus in beech (Fagus sylvatica) as influenced by aluminum and nitrogen.
    Bengtsson B; Asp H; Jensén P
    Tree Physiol; 1994 Jan; 14(1):63-73. PubMed ID: 14967634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nitrogen source on growth and activity of nitrogen-assimilating enzymes in Douglas-fir seedlings.
    Bedell JP; Chalot M; Garnier A; Botton B
    Tree Physiol; 1999 Mar; 19(3):205-210. PubMed ID: 12651584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings in a natural substrate treated with elevated Al concentrations.
    Ahonen-Jonnarth U; Göransson A; Finlay RD
    Tree Physiol; 2003 Feb; 23(3):157-67. PubMed ID: 12566266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of Picea, Pinus and Pseudotsuga roots to heterogeneous nutrient distribution in soil.
    George E; Seith B; Schaeffer C; Marschner H
    Tree Physiol; 1997 Jan; 17(1):39-45. PubMed ID: 14759912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomass and nutrient allocation in Douglas-fir and amabilis fir seedlings: influence of growth rate and temperature.
    Hawkins BJ; Kiiskila SB; Henry G
    Tree Physiol; 1999 Jan; 19(1):59-63. PubMed ID: 12651333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of nutrient supply and water vapour pressure on root architecture of Douglas-fir and western hemlock seedlings.
    Conlin TSS; van den Driessche R
    Funct Plant Biol; 2006 Oct; 33(10):941-948. PubMed ID: 32689304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Douglas-fir and lodgepole pine grown and measured with different inorganic nitrogen sources.
    Hawkins BJ; Boukcim H; Plassard C
    Plant Cell Environ; 2008 Mar; 31(3):278-87. PubMed ID: 18034773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of Douglas-fir seedlings to a brief pulse of 15N-labeled nutrients.
    Warren CR; Livingston NJ; Turpin DH
    Tree Physiol; 2003 Dec; 23(17):1193-200. PubMed ID: 14597428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Family variation in nutritional and growth traits in Douglas-fir seedlings.
    Hawkins BJ
    Tree Physiol; 2007 Jun; 27(6):911-9. PubMed ID: 17331909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Alleviation effect of exogenous Ca, P and N on the growth of Chinese fir seedlings under Al stress].
    Zhang F; Luo C; Zahng J
    Ying Yong Sheng Tai Xue Bao; 2005 Feb; 16(2):213-7. PubMed ID: 15852910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tolerance of Douglas Fir Somatic Plantlets to Aluminum Stress: Biological, Cytological, and Mineral Studies.
    Amara H; Lelu-Walter MA; Gloaguen V; Faugeron-Girard C
    Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32326164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New root growth of Douglas-fir seedlings at low carbon dioxide concentration.
    Van Den Driessche R
    Tree Physiol; 1991 Apr; 8(3):289-95. PubMed ID: 14972879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of elevated nitrate and aluminum on the growth and nutrition of red spruce (Picea rubens) seedlings.
    Cumming JR; Brown SM
    Tree Physiol; 1994 Jun; 14(6):589-99. PubMed ID: 14967676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of aluminum on growth, development, and nutrient composition of honeylocust (Gleditsia triacanthos L.) seedlings.
    Thornton FC; Schaedle M; Raynal DJ
    Tree Physiol; 1986 Dec; 2(1_2_3):307-316. PubMed ID: 14975864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of the ectomycorrhizal fungus Rhizopogon subareolatus on growth and nutrient element localisation in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in response to manganese stress.
    Dučić T; Parladé J; Polle A
    Mycorrhiza; 2008 Jul; 18(5):227-239. PubMed ID: 18437431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus deficiency enhances aluminum tolerance of rice (Oryza sativa) by changing the physicochemical characteristics of root plasma membranes and cell walls.
    Maejima E; Watanabe T; Osaki M; Wagatsuma T
    J Plant Physiol; 2014 Jan; 171(2):9-15. PubMed ID: 24331414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.