These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 14972994)

  • 1. Aboveground production and N and P use by Larix occidentalis and Pinus contorta in the Washington Cascades, USA.
    Gower ST; Grier CC; Vogt KA
    Tree Physiol; 1989 Mar; 5(1):1-11. PubMed ID: 14972994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feast not famine: Nitrogen pools recover rapidly in 25-yr-old postfire lodgepole pine.
    Turner MG; Whitby TG; Romme WH
    Ecology; 2019 Mar; 100(3):e02626. PubMed ID: 30648264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twenty-four years after theYellowstone Fires: Are postfire lodgepole pine stands converging in structure and function?
    Turner MG; Whitby TG; Tinker DB; Romme WH
    Ecology; 2016 May; 97(5):1260-73. PubMed ID: 27349102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth, aboveground biomass, and nutrient concentration of young Scots pine and lodgepole pine in oil shale post-mining landscapes in Estonia.
    Kuznetsova T; Tilk M; Pärn H; Lukjanova A; Mandre M
    Environ Monit Assess; 2011 Dec; 183(1-4):341-50. PubMed ID: 21374054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests.
    Nelson KN; Turner MG; Romme WH; Tinker DB
    Ecol Appl; 2016 Dec; 26(8):2422-2436. PubMed ID: 27875007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Canopy dynamics and aboveground production of five tree species with different leaf longevities.
    Gower ST; Reich PB; Son Y
    Tree Physiol; 1993 Jun; 12(4):327-45. PubMed ID: 14969905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-deficit and fungal infection can differentially affect the production of different classes of defense compounds in two host pines of mountain pine beetle.
    Erbilgin N; Cale JA; Lusebrink I; Najar A; Klutsch JG; Sherwood P; Enrico Bonello P; Evenden ML
    Tree Physiol; 2017 Mar; 37(3):338-350. PubMed ID: 27881799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lodgepole Pine Cambium (Pinus contorta Dougl. ex Loud. var. latifolia Engelm. ex S. Wats.): a springtime first peoples' food in British Columbia.
    Dilbone M; Turner NJ; von Aderkas P
    Ecol Food Nutr; 2013; 52(2):130-47. PubMed ID: 23445392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. To live fast or not: growth, vigor and longevity of old-growth ponderosa pine and lodgepole pine trees.
    Kaufmann MR
    Tree Physiol; 1996; 16(1_2):139-144. PubMed ID: 14871757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.
    Smolinski SL; Anthamatten PJ; Bruederle LP; Barbour JM; Chambers FB
    J Environ Manage; 2014 Jun; 139():32-7. PubMed ID: 24681362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cambial injury in lodgepole pine (Pinus contorta): mountain pine beetle vs fire.
    Arbellay E; Daniels LD; Mansfield SD; Chang AS
    Tree Physiol; 2017 Dec; 37(12):1611-1621. PubMed ID: 29121262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomass and biomass change in lodgepole pine stands in Alberta.
    Monserud RA; Huang S; Yang Y
    Tree Physiol; 2006 Jun; 26(6):819-31. PubMed ID: 16510398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon and nitrogen status of litterfall, litter decomposition and soil in even-aged larch, red pine and rigitaeda pine plantations.
    Kim C; Jeong J; Cho HS; Son Y
    J Plant Res; 2010 Jul; 123(4):403-9. PubMed ID: 20195884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity.
    Andrews SF; Flanagan LB; Sharp EJ; Cai T
    Tree Physiol; 2012 Feb; 32(2):146-60. PubMed ID: 22318220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of introgression on the genetic population structure of two ecologically and economically important conifer species: lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana).
    Cullingham CI; Cooke JE; Coltman DW
    Genome; 2013 Oct; 56(10):577-85. PubMed ID: 24237338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population structure of a lodgepole pine (Pinus contorta) and jack pine (P. banksiana) complex as revealed by random amplified polymorphic DNA.
    Ye TZ; Yang RC; Yeh FC
    Genome; 2002 Jun; 45(3):530-40. PubMed ID: 12033622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of tree size on shoot structure and physiology of Pinus contorta and Pinus aristata.
    Schoettle AW
    Tree Physiol; 1994; 14(7_9):1055-1068. PubMed ID: 14967670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings.
    Smit J; Van Den Driessche R
    Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold acclimation of Pinus contorta and Pinus sylvestris assessed by chlorophyll fluorescence.
    Lindgren K; Hällgren JE
    Tree Physiol; 1993 Jul; 13(1):97-106. PubMed ID: 14969904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of total leaf area to projected leaf area in lodgepole pine and Douglas-fir.
    Barclay HJ
    Tree Physiol; 1998 Mar; 18(3):185-193. PubMed ID: 12651388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.