These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 14973127)
1. Functional TIM10 chaperone assembly is redox-regulated in vivo. Lu H; Allen S; Wardleworth L; Savory P; Tokatlidis K J Biol Chem; 2004 Apr; 279(18):18952-8. PubMed ID: 14973127 [TBL] [Abstract][Full Text] [Related]
2. Juxtaposition of the two distal CX3C motifs via intrachain disulfide bonding is essential for the folding of Tim10. Allen S; Lu H; Thornton D; Tokatlidis K J Biol Chem; 2003 Oct; 278(40):38505-13. PubMed ID: 12882976 [TBL] [Abstract][Full Text] [Related]
3. The structural basis of the TIM10 chaperone assembly. Lu H; Golovanov AP; Alcock F; Grossmann JG; Allen S; Lian LY; Tokatlidis K J Biol Chem; 2004 Apr; 279(18):18959-66. PubMed ID: 14973126 [TBL] [Abstract][Full Text] [Related]
4. Mutation of conserved charged residues in mitochondrial TIM10 subunits precludes TIM10 complex assembly, but does not abolish growth of yeast cells. Vergnolle MA; Alcock FH; Petrakis N; Tokatlidis K J Mol Biol; 2007 Aug; 371(5):1315-24. PubMed ID: 17618651 [TBL] [Abstract][Full Text] [Related]
5. Assembly of the mitochondrial Tim9-Tim10 complex: a multi-step reaction with novel intermediates. Ivanova E; Jowitt TA; Lu H J Mol Biol; 2008 Jan; 375(1):229-39. PubMed ID: 18022191 [TBL] [Abstract][Full Text] [Related]
6. Folding and biogenesis of mitochondrial small Tim proteins. Ceh-Pavia E; Spiller MP; Lu H Int J Mol Sci; 2013 Aug; 14(8):16685-705. PubMed ID: 23945562 [TBL] [Abstract][Full Text] [Related]
7. Oxidative folding of small Tims is mediated by site-specific docking onto Mia40 in the mitochondrial intermembrane space. Sideris DP; Tokatlidis K Mol Microbiol; 2007 Sep; 65(5):1360-73. PubMed ID: 17680986 [TBL] [Abstract][Full Text] [Related]
8. Oxidative folding competes with mitochondrial import of the small Tim proteins. Morgan B; Lu H Biochem J; 2008 Apr; 411(1):115-22. PubMed ID: 18076384 [TBL] [Abstract][Full Text] [Related]
9. Assembly of Tim9 and Tim10 into a functional chaperone. Vial S; Lu H; Allen S; Savory P; Thornton D; Sheehan J; Tokatlidis K J Biol Chem; 2002 Sep; 277(39):36100-8. PubMed ID: 12138093 [TBL] [Abstract][Full Text] [Related]
10. Biogenesis of the essential Tim9-Tim10 chaperone complex of mitochondria: site-specific recognition of cysteine residues by the intermembrane space receptor Mia40. Milenkovic D; Gabriel K; Guiard B; Schulze-Specking A; Pfanner N; Chacinska A J Biol Chem; 2007 Aug; 282(31):22472-80. PubMed ID: 17553782 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial Tim9 protects Tim10 from degradation by the protease Yme1. Spiller MP; Guo L; Wang Q; Tran P; Lu H Biosci Rep; 2015 Mar; 35(3):. PubMed ID: 26182355 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria. Terziyska N; Grumbt B; Kozany C; Hell K J Biol Chem; 2009 Jan; 284(3):1353-63. PubMed ID: 19011240 [TBL] [Abstract][Full Text] [Related]
13. Structural and functional requirements for activity of the Tim9-Tim10 complex in mitochondrial protein import. Baker MJ; Webb CT; Stroud DA; Palmer CS; Frazier AE; Guiard B; Chacinska A; Gulbis JM; Ryan MT Mol Biol Cell; 2009 Feb; 20(3):769-79. PubMed ID: 19037098 [TBL] [Abstract][Full Text] [Related]
14. Zinc can play chaperone-like and inhibitor roles during import of mitochondrial small Tim proteins. Morgan B; Ang SK; Yan G; Lu H J Biol Chem; 2009 Mar; 284(11):6818-25. PubMed ID: 19117943 [TBL] [Abstract][Full Text] [Related]
15. Distinct domains of small Tims involved in subunit interaction and substrate recognition. Vergnolle MA; Baud C; Golovanov AP; Alcock F; Luciano P; Lian LY; Tokatlidis K J Mol Biol; 2005 Aug; 351(4):839-49. PubMed ID: 16039669 [TBL] [Abstract][Full Text] [Related]
16. Assembly of the three small Tim proteins precedes docking to the mitochondrial carrier translocase. Gebert N; Chacinska A; Wagner K; Guiard B; Koehler CM; Rehling P; Pfanner N; Wiedemann N EMBO Rep; 2008 Jun; 9(6):548-54. PubMed ID: 18421298 [TBL] [Abstract][Full Text] [Related]
17. The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis. Mordas A; Tokatlidis K Acc Chem Res; 2015 Aug; 48(8):2191-9. PubMed ID: 26214018 [TBL] [Abstract][Full Text] [Related]
18. Zinc binding stabilizes mitochondrial Tim10 in a reduced and import-competent state kinetically. Lu H; Woodburn J J Mol Biol; 2005 Nov; 353(4):897-910. PubMed ID: 16199054 [TBL] [Abstract][Full Text] [Related]
19. Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. Chacinska A; Pfannschmidt S; Wiedemann N; Kozjak V; Sanjuán Szklarz LK; Schulze-Specking A; Truscott KN; Guiard B; Meisinger C; Pfanner N EMBO J; 2004 Oct; 23(19):3735-46. PubMed ID: 15359280 [TBL] [Abstract][Full Text] [Related]
20. Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria. Wrobel L; Trojanowska A; Sztolsztener ME; Chacinska A Mol Biol Cell; 2013 Mar; 24(5):543-54. PubMed ID: 23283984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]