BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 14973127)

  • 1. Functional TIM10 chaperone assembly is redox-regulated in vivo.
    Lu H; Allen S; Wardleworth L; Savory P; Tokatlidis K
    J Biol Chem; 2004 Apr; 279(18):18952-8. PubMed ID: 14973127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Juxtaposition of the two distal CX3C motifs via intrachain disulfide bonding is essential for the folding of Tim10.
    Allen S; Lu H; Thornton D; Tokatlidis K
    J Biol Chem; 2003 Oct; 278(40):38505-13. PubMed ID: 12882976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structural basis of the TIM10 chaperone assembly.
    Lu H; Golovanov AP; Alcock F; Grossmann JG; Allen S; Lian LY; Tokatlidis K
    J Biol Chem; 2004 Apr; 279(18):18959-66. PubMed ID: 14973126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation of conserved charged residues in mitochondrial TIM10 subunits precludes TIM10 complex assembly, but does not abolish growth of yeast cells.
    Vergnolle MA; Alcock FH; Petrakis N; Tokatlidis K
    J Mol Biol; 2007 Aug; 371(5):1315-24. PubMed ID: 17618651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of the mitochondrial Tim9-Tim10 complex: a multi-step reaction with novel intermediates.
    Ivanova E; Jowitt TA; Lu H
    J Mol Biol; 2008 Jan; 375(1):229-39. PubMed ID: 18022191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding and biogenesis of mitochondrial small Tim proteins.
    Ceh-Pavia E; Spiller MP; Lu H
    Int J Mol Sci; 2013 Aug; 14(8):16685-705. PubMed ID: 23945562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative folding of small Tims is mediated by site-specific docking onto Mia40 in the mitochondrial intermembrane space.
    Sideris DP; Tokatlidis K
    Mol Microbiol; 2007 Sep; 65(5):1360-73. PubMed ID: 17680986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative folding competes with mitochondrial import of the small Tim proteins.
    Morgan B; Lu H
    Biochem J; 2008 Apr; 411(1):115-22. PubMed ID: 18076384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of Tim9 and Tim10 into a functional chaperone.
    Vial S; Lu H; Allen S; Savory P; Thornton D; Sheehan J; Tokatlidis K
    J Biol Chem; 2002 Sep; 277(39):36100-8. PubMed ID: 12138093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogenesis of the essential Tim9-Tim10 chaperone complex of mitochondria: site-specific recognition of cysteine residues by the intermembrane space receptor Mia40.
    Milenkovic D; Gabriel K; Guiard B; Schulze-Specking A; Pfanner N; Chacinska A
    J Biol Chem; 2007 Aug; 282(31):22472-80. PubMed ID: 17553782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial Tim9 protects Tim10 from degradation by the protease Yme1.
    Spiller MP; Guo L; Wang Q; Tran P; Lu H
    Biosci Rep; 2015 Mar; 35(3):. PubMed ID: 26182355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria.
    Terziyska N; Grumbt B; Kozany C; Hell K
    J Biol Chem; 2009 Jan; 284(3):1353-63. PubMed ID: 19011240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional requirements for activity of the Tim9-Tim10 complex in mitochondrial protein import.
    Baker MJ; Webb CT; Stroud DA; Palmer CS; Frazier AE; Guiard B; Chacinska A; Gulbis JM; Ryan MT
    Mol Biol Cell; 2009 Feb; 20(3):769-79. PubMed ID: 19037098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc can play chaperone-like and inhibitor roles during import of mitochondrial small Tim proteins.
    Morgan B; Ang SK; Yan G; Lu H
    J Biol Chem; 2009 Mar; 284(11):6818-25. PubMed ID: 19117943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct domains of small Tims involved in subunit interaction and substrate recognition.
    Vergnolle MA; Baud C; Golovanov AP; Alcock F; Luciano P; Lian LY; Tokatlidis K
    J Mol Biol; 2005 Aug; 351(4):839-49. PubMed ID: 16039669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly of the three small Tim proteins precedes docking to the mitochondrial carrier translocase.
    Gebert N; Chacinska A; Wagner K; Guiard B; Koehler CM; Rehling P; Pfanner N; Wiedemann N
    EMBO Rep; 2008 Jun; 9(6):548-54. PubMed ID: 18421298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis.
    Mordas A; Tokatlidis K
    Acc Chem Res; 2015 Aug; 48(8):2191-9. PubMed ID: 26214018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc binding stabilizes mitochondrial Tim10 in a reduced and import-competent state kinetically.
    Lu H; Woodburn J
    J Mol Biol; 2005 Nov; 353(4):897-910. PubMed ID: 16199054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins.
    Chacinska A; Pfannschmidt S; Wiedemann N; Kozjak V; Sanjuán Szklarz LK; Schulze-Specking A; Truscott KN; Guiard B; Meisinger C; Pfanner N
    EMBO J; 2004 Oct; 23(19):3735-46. PubMed ID: 15359280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria.
    Wrobel L; Trojanowska A; Sztolsztener ME; Chacinska A
    Mol Biol Cell; 2013 Mar; 24(5):543-54. PubMed ID: 23283984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.