These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 14973131)

  • 1. A new intrinsic thermal parameter for enzymes reveals true temperature optima.
    Peterson ME; Eisenthal R; Danson MJ; Spence A; Daniel RM
    J Biol Chem; 2004 May; 279(20):20717-22. PubMed ID: 14973131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dependence of enzyme activity on temperature: determination and validation of parameters.
    Peterson ME; Daniel RM; Danson MJ; Eisenthal R
    Biochem J; 2007 Mar; 402(2):331-7. PubMed ID: 17092210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New parameters controlling the effect of temperature on enzyme activity.
    Daniel RM; Danson MJ; Eisenthal R; Lee CK; Peterson ME
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1543-6. PubMed ID: 18031263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eurythermalism and the temperature dependence of enzyme activity.
    Lee CK; Daniel RM; Shepherd C; Saul D; Cary SC; Danson MJ; Eisenthal R; Peterson ME
    FASEB J; 2007 Jun; 21(8):1934-41. PubMed ID: 17341686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of enzyme thermal parameters for rational enzyme engineering and environmental/evolutionary studies.
    Lee CK; Monk CR; Daniel RM
    Methods Mol Biol; 2013; 996():219-30. PubMed ID: 23504427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of temperature on enzyme activity: new insights and their implications.
    Daniel RM; Danson MJ; Eisenthal R; Lee CK; Peterson ME
    Extremophiles; 2008 Jan; 12(1):51-9. PubMed ID: 17849082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The temperature optima of enzymes: a new perspective on an old phenomenon.
    Daniel RM; Danson MJ; Eisenthal R
    Trends Biochem Sci; 2001 Apr; 26(4):223-5. PubMed ID: 11295553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new understanding of how temperature affects the catalytic activity of enzymes.
    Daniel RM; Danson MJ
    Trends Biochem Sci; 2010 Oct; 35(10):584-91. PubMed ID: 20554446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Adaptation of Enzymes: Impacts of Conformational Shifts on Catalytic Activation Energy and Optimum Temperature.
    Maffucci I; Laage D; Sterpone F; Stirnemann G
    Chemistry; 2020 Aug; 26(44):10045-10056. PubMed ID: 32490588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general method of terminal truncation, evolution, and re-elongation to generate enzymes of enhanced stability.
    Hecky J; Mason JM; Arndt KM; Müller KM
    Methods Mol Biol; 2007; 352():275-304. PubMed ID: 17041271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Combined effect of temperature a(W) and pH on proteases from Pseudomonas and Bacillus spp].
    Klug C; Fehlhaber K; Müller U; Braun P
    Berl Munch Tierarztl Wochenschr; 1998 Jan; 111(1):9-12. PubMed ID: 9499620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unfolding and inactivation during thermal denaturation of an enzyme that exhibits phytase and acid phosphatase activities.
    Wang XY; Meng FG; Zhou HM
    Int J Biochem Cell Biol; 2004 Mar; 36(3):447-59. PubMed ID: 14687923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LmbE proteins from Bacillus cereus are de-N-acetylases with broad substrate specificity and are highly similar to proteins in Bacillus anthracis.
    Deli A; Koutsioulis D; Fadouloglou VE; Spiliotopoulou P; Balomenou S; Arnaouteli S; Tzanodaskalaki M; Mavromatis K; Kokkinidis M; Bouriotis V
    FEBS J; 2010 Jul; 277(13):2740-53. PubMed ID: 20491912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mg2+ decreases arrhenius energies of activation for high temperature catalysis of phosphatases in Thermoactinomyces vulgaris.
    Singh VP
    Curr Microbiol; 2007 Sep; 55(3):179-84. PubMed ID: 17657541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal denaturation of native and cross-linked Bacillus cereus 569/H beta-lactamase I.
    Arnold LD; Viswanatha T
    Biochim Biophys Acta; 1983 Dec; 749(2):192-7. PubMed ID: 6418209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic resolution structures of CTX-M beta-lactamases: extended spectrum activities from increased mobility and decreased stability.
    Chen Y; Delmas J; Sirot J; Shoichet B; Bonnet R
    J Mol Biol; 2005 Apr; 348(2):349-62. PubMed ID: 15811373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic aspects of human placental alkaline phosphatase enzyme membrane.
    Roig MG; Serrano MA; Bello JF; Cachaza JM; Kennedy JF
    J Biomater Sci Polym Ed; 1991; 2(4):287-301. PubMed ID: 1772833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding thermal adaptation of enzymes through the multistate rational design and stability prediction of 100 adenylate kinases.
    Howell SC; Inampudi KK; Bean DP; Wilson CJ
    Structure; 2014 Feb; 22(2):218-29. PubMed ID: 24361272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The catalytic efficiency (kcat/Km) of the class A beta-lactamase Toho-1 correlates with the thermal stability of its catalytic intermediate analog.
    Nitanai Y; Shimamura T; Uchiyama T; Ishii Y; Takehira M; Yutani K; Matsuzawa H; Miyano M
    Biochim Biophys Acta; 2010 Apr; 1804(4):684-91. PubMed ID: 19883800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.