These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
497 related articles for article (PubMed ID: 14973311)
1. GABAB receptor modulation of rapid inhibitory and excitatory neurotransmission from subfornical organ and other afferents to median preoptic nucleus neurons. Kolaj M; Bai D; Renaud LP J Neurophysiol; 2004 Jul; 92(1):111-22. PubMed ID: 14973311 [TBL] [Abstract][Full Text] [Related]
2. Metabotropic glutamate receptors in median preoptic neurons modulate neuronal excitability and glutamatergic and GABAergic inputs from the subfornical organ. Kolaj M; Renaud LP J Neurophysiol; 2010 Feb; 103(2):1104-13. PubMed ID: 20018832 [TBL] [Abstract][Full Text] [Related]
4. Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors. Nisenbaum ES; Berger TW; Grace AA Synapse; 1993 Jul; 14(3):221-42. PubMed ID: 8105549 [TBL] [Abstract][Full Text] [Related]
5. Orexin peptides enhance median preoptic nucleus neuronal excitability via postsynaptic membrane depolarization and enhancement of glutamatergic afferents. Kolaj M; Coderre E; Renaud LP Neuroscience; 2008 Sep; 155(4):1212-20. PubMed ID: 18674591 [TBL] [Abstract][Full Text] [Related]
6. GABAB receptors in the medial septum/diagonal band slice from 16-25 day rat. Henderson Z; Jones GA Neuroscience; 2005; 132(3):789-800. PubMed ID: 15837139 [TBL] [Abstract][Full Text] [Related]
7. GABAB receptor-mediated presynaptic inhibition of glutamatergic transmission in the inferior colliculus. Sun H; Ma CL; Kelly JB; Wu SH Neurosci Lett; 2006 May; 399(1-2):151-6. PubMed ID: 16513264 [TBL] [Abstract][Full Text] [Related]
8. Regulation of synaptic input to hypothalamic presympathetic neurons by GABA(B) receptors. Chen Q; Pan HL Neuroscience; 2006 Oct; 142(2):595-606. PubMed ID: 16887273 [TBL] [Abstract][Full Text] [Related]
9. Suprachiasmatic nucleus communicates with anterior thalamic paraventricular nucleus neurons via rapid glutamatergic and gabaergic neurotransmission: state-dependent response patterns observed in vitro. Zhang L; Kolaj M; Renaud LP Neuroscience; 2006 Sep; 141(4):2059-66. PubMed ID: 16797851 [TBL] [Abstract][Full Text] [Related]
10. G-protein-coupled GABAB receptors inhibit Ca2+ channels and modulate transmitter release in descending turtle spinal cord terminal synapsing motoneurons. Castro A; Aguilar J; Elias D; Felix R; Delgado-Lezama R J Comp Neurol; 2007 Aug; 503(5):642-54. PubMed ID: 17559099 [TBL] [Abstract][Full Text] [Related]
11. Effects of N-methyl-D-aspartate glutamate receptor antagonists on oscillatory signal propagation in the guinea-pig accessory olfactory bulb slice: characterization by optical, field potential and patch clamp recordings. Sugai T; Onoda N Neuroscience; 2005; 135(2):583-94. PubMed ID: 16112479 [TBL] [Abstract][Full Text] [Related]
12. Heterogeneous chloride homeostasis and GABA responses in the median preoptic nucleus of the rat. Grob M; Mouginot D J Physiol; 2005 Dec; 569(Pt 3):885-901. PubMed ID: 16239278 [TBL] [Abstract][Full Text] [Related]
13. GABA(B) modulation of GABA(A) and glycine receptor-mediated synaptic currents in hypoglossal motoneurons. O'Brien JA; Sebe JY; Berger AJ Respir Physiol Neurobiol; 2004 Jul; 141(1):35-45. PubMed ID: 15234674 [TBL] [Abstract][Full Text] [Related]
15. Pre- and postsynaptic GABA(B) receptors modulate rapid neurotransmission from suprachiasmatic nucleus to parvocellular hypothalamic paraventricular nucleus neurons. Wang D; Cui LN; Renaud LP Neuroscience; 2003; 118(1):49-58. PubMed ID: 12676136 [TBL] [Abstract][Full Text] [Related]
16. Presynaptic angiotensin II AT1 receptors enhance inhibitory and excitatory synaptic neurotransmission to motoneurons and other ventral horn neurons in neonatal rat spinal cord. Oz M; Yang KH; O'donovan MJ; Renaud LP J Neurophysiol; 2005 Aug; 94(2):1405-12. PubMed ID: 16061493 [TBL] [Abstract][Full Text] [Related]
17. Neurokinin-1 receptors in the rat nucleus tractus solitarius: pre- and postsynaptic modulation of glutamate and GABA release. Bailey CP; Maubach KA; Jones RS Neuroscience; 2004; 127(2):467-79. PubMed ID: 15262336 [TBL] [Abstract][Full Text] [Related]
18. Distinct mechanisms of presynaptic inhibition at GABAergic synapses of the rat substantia nigra pars compacta. Giustizieri M; Bernardi G; Mercuri NB; Berretta N J Neurophysiol; 2005 Sep; 94(3):1992-2003. PubMed ID: 15944237 [TBL] [Abstract][Full Text] [Related]
19. Differences in electrophysiological properties of angiotensinergic pathways from the subfornical organ to the median preoptic nucleus between normotensive Wistar-Kyoto and spontaneously hypertensive rats. Tanaka J; Yamamuro Y; Saito H; Matsuda M; Nomura M Exp Neurol; 1995 Aug; 134(2):192-8. PubMed ID: 7556538 [TBL] [Abstract][Full Text] [Related]
20. GABAB receptor-dependent modulation of network activity in the rat prefrontal cortex in vitro. Wang Y; Neubauer FB; Lüscher HR; Thurley K Eur J Neurosci; 2010 May; 31(9):1582-94. PubMed ID: 20525071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]