BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 14973583)

  • 1. Cyclopropyl fatty acids implicate a radical but not a cation as an intermediate in P450BM3-catalysed hydroxylations.
    Cryle MJ; Stuthe JM; Ortiz de Montellano PR; De Voss JJ
    Chem Commun (Camb); 2004 Mar; (5):512-3. PubMed ID: 14973583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclopropyl containing fatty acids as mechanistic probes for cytochromes P450.
    Cryle MJ; Ortiz de Montellano PR; De Voss JJ
    J Org Chem; 2005 Apr; 70(7):2455-69. PubMed ID: 15787531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are branched chain fatty acids the natural substrates for P450(BM3)?
    Cryle MJ; Espinoza RD; Smith SJ; Matovic NJ; De Voss JJ
    Chem Commun (Camb); 2006 Jun; (22):2353-5. PubMed ID: 16733577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium.
    Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW
    Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-substrate complementarity governs access to a cationic reaction manifold in the P450(BM3)-catalysed oxidation of cyclopropyl fatty acids.
    Cryle MJ; Hayes PY; De Voss JJ
    Chemistry; 2012 Dec; 18(50):15994-9. PubMed ID: 23109039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase.
    Neeli R; Girvan HM; Lawrence A; Warren MJ; Leys D; Scrutton NS; Munro AW
    FEBS Lett; 2005 Oct; 579(25):5582-8. PubMed ID: 16214136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Products of cytochrome P450(BioI) (CYP107H1)-catalyzed oxidation of fatty acids.
    Cryle MJ; Matovic NJ; De Voss JJ
    Org Lett; 2003 Sep; 5(18):3341-4. PubMed ID: 12943422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P450BM-3: absolute configuration of the primary metabolites of palmitic acid.
    Truan G; Komandla MR; Falck JR; Peterson JA
    Arch Biochem Biophys; 1999 Jun; 366(2):192-8. PubMed ID: 10356283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the conserved threonine in P450 BM3 oxygen activation: substrate-determined hydroxylation activity of the Thr268Ala mutant.
    Cryle MJ; De Voss JJ
    Chembiochem; 2008 Jan; 9(2):261-6. PubMed ID: 18161730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines.
    Chowdhary PK; Keshavan N; Nguyen HQ; Peterson JA; González JE; Haines DC
    Biochemistry; 2007 Dec; 46(50):14429-37. PubMed ID: 18020460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dithionite-supported hydroxylation of palmitic acid by cytochrome P450BM-3.
    Fang X; Halpert JR
    Drug Metab Dispos; 1996 Nov; 24(11):1282-5. PubMed ID: 8937865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73-84 with the homologous residues from the insect cytochrome P450 CYP4C7.
    Murataliev MB; Trinh LN; Moser LV; Bates RB; Feyereisen R; Walker FA
    Biochemistry; 2004 Feb; 43(7):1771-80. PubMed ID: 14967018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of substrates at the surface of P450s can greatly enhance substrate potency.
    Hegde A; Haines DC; Bondlela M; Chen B; Schaffer N; Tomchick DR; Machius M; Nguyen H; Chowdhary PK; Stewart L; Lopez C; Peterson JA
    Biochemistry; 2007 Dec; 46(49):14010-7. PubMed ID: 18004886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobaltocene-mediated catalytic monooxygenation using holo and heme domain cytochrome P450 BM3.
    Udit AK; Arnold FH; Gray HB
    J Inorg Biochem; 2004 Sep; 98(9):1547-50. PubMed ID: 15337607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thr268 in substrate binding and catalysis in P450BM-3.
    Truan G; Peterson JA
    Arch Biochem Biophys; 1998 Jan; 349(1):53-64. PubMed ID: 9439582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation and partial characterization of soluble fatty acid alpha-hydroxylase from Sphingomonas paucimobilus.
    Matsunaga I; Kusunose E; Yano I; Ichihara K
    Biochem Biophys Res Commun; 1994 Jun; 201(3):1554-60. PubMed ID: 8024600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly active single-mutation variant of P450BM3 (CYP102A1).
    Whitehouse CJ; Bell SG; Yang W; Yorke JA; Blanford CF; Strong AJ; Morse EJ; Bartlam M; Rao Z; Wong LL
    Chembiochem; 2009 Jul; 10(10):1654-6. PubMed ID: 19492389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective hydroxylation of highly branched fatty acids and their derivatives by CYP102A1 from Bacillus megaterium.
    Budde M; Morr M; Schmid RD; Urlacher VB
    Chembiochem; 2006 May; 7(5):789-94. PubMed ID: 16566047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.