These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Relationship between the redox change in yellow fluorescent protein of Vibrio fischeri strain Y1 and the reversible change in color of bioluminescence in vitro. Karatani H; Izuta T; Hirayama S Photochem Photobiol Sci; 2007 May; 6(5):566-70. PubMed ID: 17487310 [TBL] [Abstract][Full Text] [Related]
3. Bioluminescence color modulation of Vibrio fischeri strain Y1 coupled with alterable levels of endogenous yellow fluorescent protein and its fluorescence imaging. Karatani H; Matsumoto S; Miyata K; Yoshizawa S; Suhama Y; Hirayama S Photochem Photobiol; 2006; 82(2):587-92. PubMed ID: 16613517 [TBL] [Abstract][Full Text] [Related]
4. Interaction of Photobacterium leiognathi and Vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins: bioluminescence effects of the aliphatic additive. Petushkov VN; Ketelaars M; Gibson BG; Lee J Biochemistry; 1996 Sep; 35(37):12086-93. PubMed ID: 8810914 [TBL] [Abstract][Full Text] [Related]
5. The yellow bioluminescence bacterium, Vibrio fischeri Y1, contains a bioluminescence active riboflavin protein in addition to the yellow fluorescence FMN protein. Petushkov VN; Gibson BG; Lee J Biochem Biophys Res Commun; 1995 Jun; 211(3):774-9. PubMed ID: 7598706 [TBL] [Abstract][Full Text] [Related]
6. A blue fluorescent protein from a yellow-emitting luminous bacterium. Karatani H; Wilson T; Hastings JW Photochem Photobiol; 1992 Feb; 55(2):293-9. PubMed ID: 1542710 [TBL] [Abstract][Full Text] [Related]
7. A time-dependent bacterial bioluminescence emission spectrum in an in vitro single turnover system: energy transfer alone cannot account for the yellow emission of Vibrio fischeri Y-1. Eckstein JW; Cho KW; Colepicolo P; Ghisla S; Hastings JW; Wilson T Proc Natl Acad Sci U S A; 1990 Feb; 87(4):1466-70. PubMed ID: 2304912 [TBL] [Abstract][Full Text] [Related]
8. Elemental sulfur: toxicity in vivo and in vitro to bacterial luciferase, in vitro yeast alcohol dehydrogenase, and bovine liver catalase. Cetkauskaite A; Pessala P; Södergren A Environ Toxicol; 2004 Aug; 19(4):372-86. PubMed ID: 15269910 [TBL] [Abstract][Full Text] [Related]
9. Yellow light emission of Vibrio fischeri strain Y-1: purification and characterization of the energy-accepting yellow fluorescent protein. Daubner SC; Astorga AM; Leisman GB; Baldwin TO Proc Natl Acad Sci U S A; 1987 Dec; 84(24):8912-6. PubMed ID: 3480518 [TBL] [Abstract][Full Text] [Related]
10. Purification and characterization of flavoproteins and cytochromes from the yellow bioluminescence marine bacterium Vibrio fischeri strain Y1. Petushkov VN; Lee J Eur J Biochem; 1997 May; 245(3):790-6. PubMed ID: 9183020 [TBL] [Abstract][Full Text] [Related]
11. Concatenation of cyan and yellow fluorescent proteins for efficient resonance energy transfer. Shimozono S; Hosoi H; Mizuno H; Fukano T; Tahara T; Miyawaki A Biochemistry; 2006 May; 45(20):6267-71. PubMed ID: 16700538 [TBL] [Abstract][Full Text] [Related]
12. Visualization of mitochondria in living cells with a genetically encoded yellow fluorescent protein originating from a yellow-emitting luminous bacterium. Karatani H; Namikawa Y; Mori N; Nishikawa Y; Imai S; Ihara Y; Kinoshita A; Kitadokoro K; Oyama H Photochem Photobiol Sci; 2013 May; 12(5):944-56. PubMed ID: 23493994 [TBL] [Abstract][Full Text] [Related]
13. Molecular characterization of autoinduction of bioluminescence in the Microtox indicator strain Vibrio fischeri ATCC 49387. Perry LL; Bright NG; Carroll RJ; Scott MC; Allen MS; Applegate BM Can J Microbiol; 2005 Jul; 51(7):549-57. PubMed ID: 16175203 [TBL] [Abstract][Full Text] [Related]
14. Autoinduction of light emission in different species of bioluminescent bacteria. Meighen EA Luminescence; 1999; 14(1):3-9. PubMed ID: 10398554 [TBL] [Abstract][Full Text] [Related]
15. Vibrio azureus emits blue-shifted light via an accessory blue fluorescent protein. Yoshizawa S; Karatani H; Wada M; Kogure K FEMS Microbiol Lett; 2012 Apr; 329(1):61-8. PubMed ID: 22268378 [TBL] [Abstract][Full Text] [Related]
16. Study on the relationship of protease production and luminescence in Vibrio harveyi. Nakayama T; Nomura N; Matsumura M J Appl Microbiol; 2006 Jul; 101(1):200-5. PubMed ID: 16834607 [TBL] [Abstract][Full Text] [Related]
17. Cyanide-resistant respiration in Taenia crassiceps metacestode (cysticerci) is explained by the H2O2-producing side-reaction of respiratory complex I with O2. del Arenal IP; Rubio ME; Ramírez J; Rendón JL; Escamilla JE Parasitol Int; 2005 Sep; 54(3):185-93. PubMed ID: 15958286 [TBL] [Abstract][Full Text] [Related]
18. Effects of respiratory activity on starvation survival of marine vibrios. Smigielski AJ; Wallace BJ; Abrahams S; Marshall KC Arch Microbiol; 1990; 153(2):175-80. PubMed ID: 2154166 [TBL] [Abstract][Full Text] [Related]
19. Quorum sensing in vibrios: complexity for diversification. Milton DL Int J Med Microbiol; 2006 Apr; 296(2-3):61-71. PubMed ID: 16487746 [TBL] [Abstract][Full Text] [Related]
20. The influence of NaCl and carbonylcyanide-m-chlorophenylhydrazone on the production of extracellular proteases in a marine Vibrio strain. Kim YJ J Microbiol; 2004 Jun; 42(2):156-9. PubMed ID: 15357312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]