These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 14975313)

  • 1. Analysis of genome-wide histone acetylation state and enzyme binding using DNA microarrays.
    Robyr D; Kurdistani SK; Grunstein M
    Methods Enzymol; 2004; 376():289-304. PubMed ID: 14975313
    [No Abstract]   [Full Text] [Related]  

  • 2. Mapping global histone acetylation patterns to gene expression.
    Kurdistani SK; Tavazoie S; Grunstein M
    Cell; 2004 Jun; 117(6):721-33. PubMed ID: 15186774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of chromatin immunoprecipitation assays in genome-wide location analysis of mammalian transcription factors.
    Ren B; Dynlacht BD
    Methods Enzymol; 2004; 376():304-15. PubMed ID: 14975314
    [No Abstract]   [Full Text] [Related]  

  • 4. Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast.
    Wirén M; Silverstein RA; Sinha I; Walfridsson J; Lee HM; Laurenson P; Pillus L; Robyr D; Grunstein M; Ekwall K
    EMBO J; 2005 Aug; 24(16):2906-18. PubMed ID: 16079916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ChIP on chip assays: genome-wide analysis of transcription factor binding and histone modifications.
    Pillai S; Chellappan SP
    Methods Mol Biol; 2009; 523():341-66. PubMed ID: 19381927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide screening for target regions of histone deacetylases in cardiomyocytes.
    Kaneda R; Ueno S; Yamashita Y; Choi YL; Koinuma K; Takada S; Wada T; Shimada K; Mano H
    Circ Res; 2005 Aug; 97(3):210-8. PubMed ID: 16002748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myc-binding-site recognition in the human genome is determined by chromatin context.
    Guccione E; Martinato F; Finocchiaro G; Luzi L; Tizzoni L; Dall' Olio V; Zardo G; Nervi C; Bernard L; Amati B
    Nat Cell Biol; 2006 Jul; 8(7):764-70. PubMed ID: 16767079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formaldehyde cross-linking for studying nucleosomal dynamics.
    Jackson V
    Methods; 1999 Feb; 17(2):125-39. PubMed ID: 10075891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human papillomavirus type 16 E7 protein increases acetylation of histone H3 in human foreskin keratinocytes.
    Zhang B; Laribee RN; Klemsz MJ; Roman A
    Virology; 2004 Nov; 329(1):189-98. PubMed ID: 15476886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput screening of genome fragments bound to differentially acetylated histones.
    Kaneda R; Toyota M; Yamashita Y; Koinuma K; Choi YL; Ota J; Kisanuki H; Ishikawa M; Takada S; Shimada K; Mano H
    Genes Cells; 2004 Dec; 9(12):1167-74. PubMed ID: 15569149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide patterns of histone modifications in fission yeast.
    Sinha I; Wirén M; Ekwall K
    Chromosome Res; 2006; 14(1):95-105. PubMed ID: 16506099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone acetyltransferases and deacetylase in Entamoeba histolytica.
    Ramakrishnan G; Gilchrist CA; Musa H; Torok MS; Grant PA; Mann BJ; Petri WA
    Mol Biochem Parasitol; 2004 Dec; 138(2):205-16. PubMed ID: 15555732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide map of nucleosome acetylation and methylation in yeast.
    Pokholok DK; Harbison CT; Levine S; Cole M; Hannett NM; Lee TI; Bell GW; Walker K; Rolfe PA; Herbolsheimer E; Zeitlinger J; Lewitter F; Gifford DK; Young RA
    Cell; 2005 Aug; 122(4):517-27. PubMed ID: 16122420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase.
    Weber JM; Irlbacher H; Ehrenhofer-Murray AE
    BMC Mol Biol; 2008 Nov; 9():100. PubMed ID: 18990212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin immunoprecipitation using microarrays.
    Durand-Dubief M; Ekwall K
    Methods Mol Biol; 2009; 529():279-95. PubMed ID: 19381973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays.
    Hanlon SE; Lieb JD
    Curr Opin Genet Dev; 2004 Dec; 14(6):697-705. PubMed ID: 15531167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple histone acetylation plays a complex role in the regulation of gene expression.
    Fukuda H; Sano N; Muto S; Horikoshi M
    Brief Funct Genomic Proteomic; 2006 Sep; 5(3):190-208. PubMed ID: 16980317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic characterization reveals a simple histone H4 acetylation code.
    Dion MF; Altschuler SJ; Wu LF; Rando OJ
    Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5501-6. PubMed ID: 15795371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel type of silencing factor, Clr2, is necessary for transcriptional silencing at various chromosomal locations in the fission yeast Schizosaccharomyces pombe.
    Bjerling P; Ekwall K; Egel R; Thon G
    Nucleic Acids Res; 2004; 32(15):4421-8. PubMed ID: 15317867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated map of p53-binding sites and histone modification in the human ENCODE regions.
    Kaneshiro K; Tsutsumi S; Tsuji S; Shirahige K; Aburatani H
    Genomics; 2007 Feb; 89(2):178-88. PubMed ID: 17085012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.