These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 14975506)
1. Principles of magnetodynamic chemotherapy. Babincová M; Leszczynska D; Sourivong P; Babinec P; Leszczynski J Med Hypotheses; 2004; 62(3):375-7. PubMed ID: 14975506 [TBL] [Abstract][Full Text] [Related]
2. Improved drug delivery to cancer cells: a method using magnetoliposomes that target epidermal growth factor receptors. Kullberg M; Mann K; Owens JL Med Hypotheses; 2005; 64(3):468-70. PubMed ID: 15617850 [TBL] [Abstract][Full Text] [Related]
3. Targeted delivery of methotrexate to skeletal muscular tissue by thermosensitive magnetoliposomes. Zhu L; Huo Z; Wang L; Tong X; Xiao Y; Ni K Int J Pharm; 2009 Mar; 370(1-2):136-43. PubMed ID: 19114095 [TBL] [Abstract][Full Text] [Related]
4. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Li FR; Yan WH; Guo YH; Qi H; Zhou HX Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033 [TBL] [Abstract][Full Text] [Related]
5. In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia. Babincov M; Altanerov V; Altaner C; Bergemann C; Babinec P IEEE Trans Nanobioscience; 2008 Mar; 7(1):15-9. PubMed ID: 18334449 [TBL] [Abstract][Full Text] [Related]
6. [Targeted and controlled release of drugs using magnetoliposomes]. Babincová M Ceska Slov Farm; 1999 Jan; 48(1):27-9. PubMed ID: 10376414 [TBL] [Abstract][Full Text] [Related]
7. Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia: correlation with response and direct thermometry. Gellermann J; Hildebrandt B; Issels R; Ganter H; Wlodarczyk W; Budach V; Felix R; Tunn PU; Reichardt P; Wust P Cancer; 2006 Sep; 107(6):1373-82. PubMed ID: 16902986 [TBL] [Abstract][Full Text] [Related]
8. Possibility of active targeting to tumor by local hyperthermia with temperature-sensitive nanoparticles. Li J; Wang B; Liu P Med Hypotheses; 2008 Aug; 71(2):249-51. PubMed ID: 18455320 [TBL] [Abstract][Full Text] [Related]
9. Arrhenius relationships from the molecule and cell to the clinic. Dewey WC Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695 [TBL] [Abstract][Full Text] [Related]
10. Nonviral nanoscale-based delivery of antisense oligonucleotides targeted to hypoxia-inducible factor 1 alpha enhances the efficacy of chemotherapy in drug-resistant tumor. Wang Y; Saad M; Pakunlu RI; Khandare JJ; Garbuzenko OB; Vetcher AA; Soldatenkov VA; Pozharov VP; Minko T Clin Cancer Res; 2008 Jun; 14(11):3607-16. PubMed ID: 18519795 [TBL] [Abstract][Full Text] [Related]
11. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles. Kalambur VS; Longmire EK; Bischof JC Langmuir; 2007 Nov; 23(24):12329-36. PubMed ID: 17960940 [TBL] [Abstract][Full Text] [Related]
12. AC-magnetic field controlled drug release from magnetoliposomes: design of a method for site-specific chemotherapy. Babincová M; Cicmanec P; Altanerová V; Altaner C; Babinec P Bioelectrochemistry; 2002 Jan; 55(1-2):17-9. PubMed ID: 11786331 [TBL] [Abstract][Full Text] [Related]
13. Metastases and their microenvironments: linking pathogenesis and therapy. Sierra A Drug Resist Updat; 2005 Aug; 8(4):247-57. PubMed ID: 16095951 [TBL] [Abstract][Full Text] [Related]
14. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808 [TBL] [Abstract][Full Text] [Related]
15. Rationale for hyperthermic intraperitoneal chemotherapy (HIPEC) in the treatment or prevention of peritoneal carcinomatosis. Detroz B; Laurent S; Honoré P; Blaffart F; Limet R; Meurisse M Acta Chir Belg; 2004 Aug; 104(4):377-83. PubMed ID: 15469146 [TBL] [Abstract][Full Text] [Related]
16. Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. Ponce AM; Viglianti BL; Yu D; Yarmolenko PS; Michelich CR; Woo J; Bally MB; Dewhirst MW J Natl Cancer Inst; 2007 Jan; 99(1):53-63. PubMed ID: 17202113 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of antiphospholipid antibodies on affinity magnetoliposomes. de Pinho SC; Zollner RL; De Cuyper M; Santana MH Colloids Surf B Biointerfaces; 2008 Jun; 63(2):249-53. PubMed ID: 18243670 [TBL] [Abstract][Full Text] [Related]
18. An in vitro study of magnetic particle targeting in small blood vessels. Udrea LE; Strachan NJ; Bădescu V; Rotariu O Phys Med Biol; 2006 Oct; 51(19):4869-81. PubMed ID: 16985276 [TBL] [Abstract][Full Text] [Related]
19. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression. Tang QS; Zhang DS; Cong XM; Wan ML; Jin LQ Biomaterials; 2008 Jun; 29(17):2673-9. PubMed ID: 18396332 [TBL] [Abstract][Full Text] [Related]
20. Medical application of functionalized magnetic nanoparticles. Ito A; Shinkai M; Honda H; Kobayashi T J Biosci Bioeng; 2005 Jul; 100(1):1-11. PubMed ID: 16233845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]