These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 14975655)

  • 1. Faecal bacteria yields in artificial flood events: quantifying in-stream stores.
    Muirhead RW; Davies-Colley RJ; Donnison AM; Nagels JW
    Water Res; 2004 Mar; 38(5):1215-24. PubMed ID: 14975655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Faecal contamination over flood events in a pastoral agricultural stream in New Zealand.
    Nagels JW; Davies-Colley RJ; Donnison AM; Muirhead RW
    Water Sci Technol; 2002; 45(12):45-52. PubMed ID: 12201126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland.
    Sanders BF; Arega F; Sutula M
    Water Res; 2005 Sep; 39(14):3394-408. PubMed ID: 16051310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential behaviour of Escherichia coli and Campylobacter spp. in a stream draining dairy pasture.
    Stott R; Davies-Colley R; Nagels J; Donnison A; Ross C; Muirhead R
    J Water Health; 2011 Mar; 9(1):59-69. PubMed ID: 21301115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Faecal indicator bacteria in river biofilms.
    Balzer M; Witt N; Flemming HC; Wingender J
    Water Sci Technol; 2010; 61(5):1105-11. PubMed ID: 20220231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of fallout radionuclides ((7)Be, (210)Pb) to estimate resuspension of Escherichia coli from streambed sediments during floods in a tropical montane catchment.
    Ribolzi O; Evrard O; Huon S; Rochelle-Newall E; Henri-des-Tureaux T; Silvera N; Thammahacksac C; Sengtaheuanghoung O
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3427-35. PubMed ID: 26490918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival of manure-borne E. coli in streambed sediment: effects of temperature and sediment properties.
    Garzio-Hadzick A; Shelton DR; Hill RL; Pachepsky YA; Guber AK; Rowland R
    Water Res; 2010 May; 44(9):2753-62. PubMed ID: 20219232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Faecal-indicator bacteria and sedimentary processes in estuarine mudflats (Seine, France).
    Berthe T; Touron A; Leloup J; Deloffre J; Petit F
    Mar Pollut Bull; 2008; 57(1-5):59-67. PubMed ID: 18036620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overland flow delivery of faecal bacteria to a headwater pastoral stream.
    Collins R; Elliott S; Adams R
    J Appl Microbiol; 2005; 99(1):126-32. PubMed ID: 15960672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stormflow-dominated loads of faecal pollution from an intensively dairy-farmed catchment.
    Davies-Colley R; Nagels J; Lydiard E
    Water Sci Technol; 2008; 57(10):1519-23. PubMed ID: 18520007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling sediment impact on the transport of fecal bacteria.
    Bai S; Lung WS
    Water Res; 2005 Dec; 39(20):5232-40. PubMed ID: 16307774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of Escherichia coli and solutes during waste water infiltration in an urban alluvial aquifer.
    Foppen JW; van Herwerden M; Kebtie M; Noman A; Schijven JF; Stuyfzand PJ; Uhlenbrook S
    J Contam Hydrol; 2008 Jan; 95(1-2):1-16. PubMed ID: 17854950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of recharge from floods in disconnected stream-aquifer systems.
    Vázquez-Suñé E; Capino B; Abarca E; Carrera J
    Ground Water; 2007; 45(5):579-89. PubMed ID: 17760584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meteorological effects on the levels of fecal indicator bacteria in an urban stream: a modeling approach.
    Cho KH; Cha SM; Kang JH; Lee SW; Park Y; Kim JW; Kim JH
    Water Res; 2010 Apr; 44(7):2189-202. PubMed ID: 20138642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling transport of Escherichia coli in a creek during and after artificial high-flow events: three-year study and analysis.
    Yakirevich A; Pachepsky YA; Guber AK; Gish TJ; Shelton DR; Cho KH
    Water Res; 2013 May; 47(8):2676-88. PubMed ID: 23521976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Considerations on the influence of extreme events on the phosphorus transport from river catchments to the sea.
    Zessner M; Postolache C; Clement A; Kovacs A; Strauss P
    Water Sci Technol; 2005; 51(11):193-204. PubMed ID: 16114633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sources and growth dynamics of fecal indicator bacteria in a coastal wetland system and potential impacts to adjacent waters.
    Evanson M; Ambrose RF
    Water Res; 2006 Feb; 40(3):475-86. PubMed ID: 16386284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sediment-water exchange of Vibrio sp. and fecal indicator bacteria: implications for persistence and transport in the Neuse River Estuary, North Carolina, USA.
    Fries JS; Characklis GW; Noble RT
    Water Res; 2008 Feb; 42(4-5):941-50. PubMed ID: 17945328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic susceptibility as a simple tracer for fluvial sediment source ascription during storm events.
    Rowntree KM; van der Waal BW; Pulley S
    J Environ Manage; 2017 Jun; 194():54-62. PubMed ID: 27939776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus and sediment loss in a catchment with winter forage grazing of cropland by dairy cattle.
    McDowell RW
    J Environ Qual; 2006; 35(2):575-83. PubMed ID: 16510702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.