These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 14975812)
1. Gas exchange and dry matter allocation responses to elevation of atmospheric CO(2) concentration in seedlings of three tree species. Hollinger DY Tree Physiol; 1987 Sep; 3(3):193-202. PubMed ID: 14975812 [TBL] [Abstract][Full Text] [Related]
2. Effect of elevated [CO(2)] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis). Murray MB; Smith RI; Friend A; Jarvis PG Tree Physiol; 2000 Apr; 20(7):421-434. PubMed ID: 12651438 [TBL] [Abstract][Full Text] [Related]
3. Effects of CO Tolley LC; Strain BR Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662 [TBL] [Abstract][Full Text] [Related]
4. Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated CO(2) and temperature. Tjoelker MG; Oleksyn J; Reich PB Tree Physiol; 1998 Nov; 18(11):715-726. PubMed ID: 12651406 [TBL] [Abstract][Full Text] [Related]
5. Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO(2) and temperature. Lewis JD; Olszyk D; Tingey DT Tree Physiol; 1999 Apr; 19(4_5):243-252. PubMed ID: 12651567 [TBL] [Abstract][Full Text] [Related]
6. Enhanced tolerance of photosynthesis to high-light and drought stress in Pseudotsuga menziesii seedlings grown in ultraviolet-B radiation. Poulson ME; Donahue RA; Konvalinka J; Boeger MR Tree Physiol; 2002 Aug; 22(12):829-38. PubMed ID: 12184972 [TBL] [Abstract][Full Text] [Related]
7. Carbon exchange rates, chlorophyll content, and carbohydrate status of two forest tree species exposed to carbon dioxide enrichment. Wullschleger SD; Norby RJ; Hendrix DL Tree Physiol; 1992 Jan; 10(1):21-31. PubMed ID: 14969872 [TBL] [Abstract][Full Text] [Related]
8. Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters. Staudt M; Joffre R; Rambal S; Kesselmeier J Tree Physiol; 2001 May; 21(7):437-45. PubMed ID: 11340044 [TBL] [Abstract][Full Text] [Related]
9. Physiological adjustment of two full-sib families of ponderosa pine to elevated CO(2). Grulke NE; Hom JL; Roberts SW Tree Physiol; 1993 Jun; 12(4):391-401. PubMed ID: 14969909 [TBL] [Abstract][Full Text] [Related]
10. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings. Smit J; Van Den Driessche R Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945 [TBL] [Abstract][Full Text] [Related]
11. Interactive effects of atmospheric carbon dioxide and leaf nitrogen concentration on canopy light use efficiency: a modeling analysis. Medlyn BE Tree Physiol; 1996; 16(1_2):201-209. PubMed ID: 14871764 [TBL] [Abstract][Full Text] [Related]
12. Effects of leaf nutrient status on photosynthetic capacity in loblolly pine (Pinus taeda L.) seedlings grown in elevated atmospheric CO(2). Thomas RB; Lewis JD; Strain BR Tree Physiol; 1994; 14(7_9):947-960. PubMed ID: 14967661 [TBL] [Abstract][Full Text] [Related]
13. Growth, CO2 exchange rate and dry matter partitioning in mungbean (Vigna radiata L.) grown under elevated CO2. Srivastava AC; Pal M; Das M; Sengupta UK Indian J Exp Biol; 2001 Jun; 39(6):572-7. PubMed ID: 12562021 [TBL] [Abstract][Full Text] [Related]
14. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species. Sefcik LT; Zak DR; Ellsworth DS Tree Physiol; 2006 Dec; 26(12):1589-99. PubMed ID: 17169898 [TBL] [Abstract][Full Text] [Related]
15. Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings. Kogawara S; Norisada M; Tange T; Yagi H; Kojima K Tree Physiol; 2006 Jan; 26(1):25-33. PubMed ID: 16203711 [TBL] [Abstract][Full Text] [Related]
16. Effects of elevated CO(2) on chloroplast components, gas exchange and growth of oak and cherry. Atkinson CJ; Taylor JM; Wilkins D; Besford RT Tree Physiol; 1997 May; 17(5):319-25. PubMed ID: 14759855 [TBL] [Abstract][Full Text] [Related]
17. Chemistry and long-term decomposition of roots of Douglas-fir grown under elevated atmospheric carbon dioxide and warming conditions. Chen H; Rygiewicz PT; Johnson MG; Harmon ME; Tian H; Tang JW J Environ Qual; 2008; 37(4):1327-36. PubMed ID: 18574162 [TBL] [Abstract][Full Text] [Related]
18. Responses of foliar gas exchange to long-term elevated CO(2) concentrations in mature loblolly pine trees. Liu S; Teskey RO Tree Physiol; 1995 Jun; 15(6):351-9. PubMed ID: 14965943 [TBL] [Abstract][Full Text] [Related]
19. Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability. Centritto M; Lucas ME; Jarvis PG Tree Physiol; 2002 Jul; 22(10):699-706. PubMed ID: 12091151 [TBL] [Abstract][Full Text] [Related]
20. Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings. Zhang S; Dang QL Tree Physiol; 2006 Nov; 26(11):1457-67. PubMed ID: 16877330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]