These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 14975813)
1. Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO(2) enrichment. Norby RJ; O'Neill EG; Hood WG; Luxmoore RJ Tree Physiol; 1987 Sep; 3(3):203-10. PubMed ID: 14975813 [TBL] [Abstract][Full Text] [Related]
2. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Phillips RP; Bernhardt ES; Schlesinger WH Tree Physiol; 2009 Dec; 29(12):1513-23. PubMed ID: 19819875 [TBL] [Abstract][Full Text] [Related]
3. Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings. Kogawara S; Norisada M; Tange T; Yagi H; Kojima K Tree Physiol; 2006 Jan; 26(1):25-33. PubMed ID: 16203711 [TBL] [Abstract][Full Text] [Related]
4. Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi. Ford CR; Wurzburger N; Hendrick RL; Teskey RO Tree Physiol; 2007 Mar; 27(3):375-83. PubMed ID: 17241979 [TBL] [Abstract][Full Text] [Related]
5. Phosphate-limitation physiology in ectomycorrhizal pitch pine (Pinus rigida) seedlings. Cumming JR Tree Physiol; 1996; 16(11_12):977-983. PubMed ID: 14871791 [TBL] [Abstract][Full Text] [Related]
6. Carbon Cost of the Fungal Symbiont Relative to Net Leaf P Accumulation in a Split-Root VA Mycorrhizal Symbiosis. Douds DD; Johnson CR; Koch KE Plant Physiol; 1988 Feb; 86(2):491-6. PubMed ID: 16665934 [TBL] [Abstract][Full Text] [Related]
7. Leaf water status and root system water flux of shortleaf pine (Pinus echinata Mill.) seedlings in relation to new root growth after transplanting. Brissette JC; Chambers JL Tree Physiol; 1992 Oct; 11(3):289-303. PubMed ID: 14969952 [TBL] [Abstract][Full Text] [Related]
8. Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua. Constable JV; Bassirirad H; Lussenhop J; Zerihun A Tree Physiol; 2001 Feb; 21(2-3):83-91. PubMed ID: 11303652 [TBL] [Abstract][Full Text] [Related]
9. Boron fertilization and carbohydrate relations in mycorrhizal and nonmycorrhizal shortleaf pine. Atalay A; Garrett HE; Mawhinney TP; Mitchell RJ Tree Physiol; 1988 Sep; 4(3):275-80. PubMed ID: 14972817 [TBL] [Abstract][Full Text] [Related]
10. Elevated CO and nitrogen influence exudation of soluble organic compounds by ectomycorrhizal root systems. Fransson PM; Johansson EM FEMS Microbiol Ecol; 2010 Feb; 71(2):186-96. PubMed ID: 19889031 [TBL] [Abstract][Full Text] [Related]
11. The effects of acid rain and ozone on biomass and leaf area parameters of shortleaf pine (Pinus echinata Mill.). Shelburne VB; Reardon JC; Paynter VA Tree Physiol; 1993 Mar; 12(2):163-72. PubMed ID: 14969926 [TBL] [Abstract][Full Text] [Related]
12. Tissue chemistry and carbon allocation in seedlings of Pinus palustris subjected to elevated atmospheric CO(2) and water stress. Runion GB; Entry JA; Prior SA; Mitchell RJ; Rogers HH Tree Physiol; 1999 Apr; 19(4_5):329-335. PubMed ID: 12651576 [TBL] [Abstract][Full Text] [Related]
13. Gas exchange and dry matter allocation responses to elevation of atmospheric CO(2) concentration in seedlings of three tree species. Hollinger DY Tree Physiol; 1987 Sep; 3(3):193-202. PubMed ID: 14975812 [TBL] [Abstract][Full Text] [Related]
14. Stress differentially causes roots of tree seedlings to exude carbon. Karst J; Gaster J; Wiley E; Landhäusser SM Tree Physiol; 2017 Feb; 37(2):154-164. PubMed ID: 27744381 [TBL] [Abstract][Full Text] [Related]
15. Allocation of carbon in mycorrhizal Pinus ponderosa seedlings exposed to ozone. Andersen CP; Rygiewicz PT New Phytol; 1995 Dec; 131(4):471-480. PubMed ID: 33863117 [TBL] [Abstract][Full Text] [Related]
16. Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Leake JR; Donnelly DP; Saunders EM; Boddy L; Read DJ Tree Physiol; 2001 Feb; 21(2-3):71-82. PubMed ID: 11303651 [TBL] [Abstract][Full Text] [Related]
17. Fungal communities influence root exudation rates in pine seedlings. Meier IC; Avis PG; Phillips RP FEMS Microbiol Ecol; 2013 Mar; 83(3):585-95. PubMed ID: 23013386 [TBL] [Abstract][Full Text] [Related]
18. Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. King JS; Pregitzer KS; Zak DR; Holmes WE; Schmidt K Oecologia; 2005 Dec; 146(2):318-28. PubMed ID: 16041614 [TBL] [Abstract][Full Text] [Related]
19. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Phillips RP; Finzi AC; Bernhardt ES Ecol Lett; 2011 Feb; 14(2):187-94. PubMed ID: 21176050 [TBL] [Abstract][Full Text] [Related]
20. Leaf-level and whole-plant gas exchange characteristics of shortleaf pine exposed to ozone and simulated acid rain. Flagler RB; Lock JE; Elsik CG Tree Physiol; 1994 Apr; 14(4):361-74. PubMed ID: 14967692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]