These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 14975813)
41. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest. Taylor BN; Strand AE; Cooper ER; Beidler KV; Schönholz M; Pritchard SG Tree Physiol; 2014 Sep; 34(9):955-65. PubMed ID: 25056092 [TBL] [Abstract][Full Text] [Related]
42. The influence of substrate pH on carbon translocation in ectomycorrhizal and non-mycorrhizal pine seedlings. Erland S; Finlay R; Söderström B New Phytol; 1991 Oct; 119(2):235-242. PubMed ID: 33874136 [TBL] [Abstract][Full Text] [Related]
43. CO2 and N-fertilization effects on fine-root length, production, and mortality: a 4-year ponderosa pine study. Phillips DL; Johnson MG; Tingey DT; Storm MJ; Ball JT; Johnson DW Oecologia; 2006 Jun; 148(3):517-25. PubMed ID: 16547735 [TBL] [Abstract][Full Text] [Related]
44. Chemistry and long-term decomposition of roots of Douglas-fir grown under elevated atmospheric carbon dioxide and warming conditions. Chen H; Rygiewicz PT; Johnson MG; Harmon ME; Tian H; Tang JW J Environ Qual; 2008; 37(4):1327-36. PubMed ID: 18574162 [TBL] [Abstract][Full Text] [Related]
45. Seasonal root distribution and soil surface carbon fluxes for one-year-old Pinus radiata trees growing at ambient and elevated carbon dioxide concentration. Thomas SM; Whitehead D; Adams JA; Reid JB; Sherlock RR; Leckie AC Tree Physiol; 1996; 16(11_12):1015-1021. PubMed ID: 14871796 [TBL] [Abstract][Full Text] [Related]
46. Growth and photosynthesis of loblolly pine (Pinus taeda) after exposure to elevated CO(2) for 19 months in the field. Tissue DT; Thomas RB; Strain BR Tree Physiol; 1996; 16(1_2):49-59. PubMed ID: 14871747 [TBL] [Abstract][Full Text] [Related]
47. Growth and nutrition of nonmycorrhizal and mycorrhizal pitch pine (Pinus rigida) seedlings under phosphorus limitation. Cumming JR Tree Physiol; 1993 Sep; 13(2):173-87. PubMed ID: 14969894 [TBL] [Abstract][Full Text] [Related]
48. Carry-over effects of ozone on root growth and carbohydrate concentrations of ponderosa pine seedlings. Andersen CP; Wilson R; Plocher M; Hogsett WE Tree Physiol; 1997 Dec; 17(12):805-11. PubMed ID: 14759890 [TBL] [Abstract][Full Text] [Related]
49. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Ryan MG; Hubbard RM; Pongracic S; Raison RJ; McMurtrie RE Tree Physiol; 1996 Mar; 16(3):333-43. PubMed ID: 14871734 [TBL] [Abstract][Full Text] [Related]
50. Effect of elevated carbon dioxide concentration and root restriction on net photosynthesis, water relations and foliar carbohydrate status of loblolly pine seedlings. Will RE; Teskey RO Tree Physiol; 1997 Oct; 17(10):655-61. PubMed ID: 14759905 [TBL] [Abstract][Full Text] [Related]
51. Long-term dynamics of mycorrhizal root tips in a loblolly pine forest grown with free-air CO2 enrichment and soil N fertilization for 6 years. Pritchard SG; Taylor BN; Cooper ER; Beidler KV; Strand AE; McCormack ML; Zhang S Glob Chang Biol; 2014 Apr; 20(4):1313-26. PubMed ID: 24123532 [TBL] [Abstract][Full Text] [Related]
52. Nitrogen availability modifies the ozone responses of Scots pine seedlings exposed in an open-field system. Utriainen J; Holopainen T Tree Physiol; 2001 Oct; 21(16):1205-13. PubMed ID: 11600342 [TBL] [Abstract][Full Text] [Related]
53. [Phosphorus transfer between mixed poplar and black locust seedlings]. He W; Jia L; Hao B; Wen X; Zhai M Ying Yong Sheng Tai Xue Bao; 2003 Apr; 14(4):481-6. PubMed ID: 12920885 [TBL] [Abstract][Full Text] [Related]
54. Effects of Atmospheric CO(2) Enrichment on the Growth and Mineral Nutrition of Quercus alba Seedlings in Nutrient-Poor Soil. Norby RJ; O'neill EG; Luxmoore RJ Plant Physiol; 1986 Sep; 82(1):83-9. PubMed ID: 16665028 [TBL] [Abstract][Full Text] [Related]
55. Effects of root temperature on growth and photosynthesis in conifer seedlings during shoot elongation. Vapaavuori EM; Rikala R; Ryyppö A Tree Physiol; 1992 Apr; 10(3):217-30. PubMed ID: 14969980 [TBL] [Abstract][Full Text] [Related]
56. CASIROZ: Root parameters and types of ectomycorrhiza of young beech plants exposed to different ozone and light regimes. Zeleznik P; Hrenko M; Then C; Koch N; Grebenc T; Levanic T; Kraigher H Plant Biol (Stuttg); 2007 Mar; 9(2):298-308. PubMed ID: 17357022 [TBL] [Abstract][Full Text] [Related]
57. Adaptation and tolerance mechanisms developed by mycorrhizal Bipinnula fimbriata plantlets (Orchidaceae) in a heavy metal-polluted ecosystem. Herrera H; Valadares R; Oliveira G; Fuentes A; Almonacid L; do Nascimento SV; Bashan Y; Arriagada C Mycorrhiza; 2018 Oct; 28(7):651-663. PubMed ID: 30094512 [TBL] [Abstract][Full Text] [Related]
58. Seasonal variation in nitrogen net uptake and root plasma membrane H+-ATPase activity of Scots pine seedlings as affected by nutrient availability. Iivonen S; Vapaavuori E Tree Physiol; 2002 Jan; 22(1):1-10. PubMed ID: 11772550 [TBL] [Abstract][Full Text] [Related]
59. Responses of Scots pine (Pinus sylvestris) seedlings grown in different nutrient regimes to changing root zone temperature in spring. Iivonen S; Rikala R; Ryyppö A; Vapaavuori E Tree Physiol; 1999 Dec; 19(14):951-958. PubMed ID: 12651307 [TBL] [Abstract][Full Text] [Related]
60. Role of nutrient level and defoliation on symbiotic function: experimental evidence by tracing 14C/15N exchange in mycorrhizal birch seedlings. Kytöviita MM Mycorrhiza; 2005 Jan; 15(1):65-70. PubMed ID: 15558328 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]