BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 14975882)

  • 1. Douglas-fir and western larch: chemical and physical properties in relation to Douglas-fir bark beetle attack.
    Reed AN; Hanover JW; Furniss MM
    Tree Physiol; 1986 Dec; 1(3):277-87. PubMed ID: 14975882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of 3-Carene in Host Location and Colonization by Dendroctonus pseudotsugae (Coleoptera: Curculionidae).
    Ross DW; Neal TA; Wallin KF
    Environ Entomol; 2022 Feb; 51(1):190-195. PubMed ID: 34698824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volatile and Within-Needle Terpene Changes to Douglas-fir Trees Associated With Douglas-fir Beetle (Coleoptera: Curculionidae) Attack.
    Giunta AD; Runyon JB; Jenkins MJ; Teich M
    Environ Entomol; 2016 Aug; 45(4):920-9. PubMed ID: 27231258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High release rate 3-methylcyclohex-2-en-1-one dispensers prevent Douglas-fir beetle (Coleoptera: Curculionidae) infestation of live Douglas-fir.
    Ross DW; Wallin KF
    J Econ Entomol; 2008 Dec; 101(6):1826-30. PubMed ID: 19133463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenology of Douglas-Fir Beetle (Coleoptera: Curculionidae) and Its Role in Douglas-Fir Mortality in Western Washington.
    Freeman MB; Labarge A; Tobin PC
    Environ Entomol; 2020 Feb; 49(1):246-254. PubMed ID: 31820791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the Summer Wild Bee Community Following a Bark Beetle Outbreak in a Douglas-fir Forest.
    Foote GG; Foote NE; Runyon JB; Ross DW; Fettig CJ
    Environ Entomol; 2020 Dec; 49(6):1437-1448. PubMed ID: 33315078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Biodegradable Formulation of MCH (3-Methylcyclohex-2-en-1-one) for Protecting Pseudotsuga menziesii from Dendroctonus pseudotsugae (Coleoptera: Curculionidae) Colonization.
    Foote GG; Fettig CJ; Ross DW; Runyon JB; Coleman TW; Gaylord ML; Graves AD; McMillin JD; Mortenson LA; Mafra-Neto A
    J Econ Entomol; 2020 Aug; 113(4):1858-1863. PubMed ID: 32281631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wild Bee Response to Application of the Douglas-fir Beetle Anti-Aggregation Pheromone, 3-Methylcyclohex-2-En-1-One.
    Foote GG; Runyon JB; Fettig CJ; Foote NE; Ross DW
    J Econ Entomol; 2021 Oct; 114(5):2121-2126. PubMed ID: 34260727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bark beetle effects on fuel profiles across a range of stand structures in Douglas-fir forests of Greater Yellowstone.
    Donato DC; Harvey BJ; Romme WH; Simard M; Turner MG
    Ecol Appl; 2013 Jan; 23(1):3-20. PubMed ID: 23495632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elution rate and spacing of antiaggregation pheromone dispensers for protecting live trees from Dendroctonus pseudotsugae (Coleoptera: Scolytidae).
    Ross DW; Daterman GE; Gibson KE
    J Econ Entomol; 2002 Aug; 95(4):778-81. PubMed ID: 12216820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dwarf mistletoe affects whole-tree water relations of Douglas fir and western larch primarily through changes in leaf to sapwood ratios.
    Sala A; Carey EV; Callaway RM
    Oecologia; 2001 Jan; 126(1):42-52. PubMed ID: 28547436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resin duct size and density as ecophysiological traits in fire scars of Pseudotsuga menziesii and Larix occidentalis.
    Arbellay E; Stoffel M; Sutherland EK; Smith KT; Falk DA
    Ann Bot; 2014 Oct; 114(5):973-80. PubMed ID: 25122653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydraulic architecture and photosynthetic capacity as constraints on release from suppression in Douglas-fir and western hemlock.
    Renninger HJ; Meinzer FC; Gartner BL
    Tree Physiol; 2007 Jan; 27(1):33-42. PubMed ID: 17169904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Storage versus substrate limitation to bole respiratory potential in two coniferous tree species of contrasting sapwood width.
    Pruyn ML; Gartner BL; Harmon ME
    J Exp Bot; 2005 Oct; 56(420):2637-49. PubMed ID: 16118257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forest stand productivity derived from site conditions: an assessment of old Douglas-fir stands (
    Eckhart T; Pötzelsberger E; Koeck R; Thom D; Lair GJ; van Loo M; Hasenauer H
    Ann For Sci; 2019; 76(1):19. PubMed ID: 30881192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience.
    Hood SM; Baker S; Sala A
    Ecol Appl; 2016 Oct; 26(7):1984-2000. PubMed ID: 27755724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of a chitinase-like protein in the roots of Douglas-fir trees infected with Armillaria ostoyae and Phellinus weirii.
    Robinson RM; Sturrock RN; Davidson JJ; Ekramoddoullah AK; Morrison DJ
    Tree Physiol; 2000 Apr; 20(8):493-502. PubMed ID: 12651429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglas-fir forests.
    Harvey BJ; Donato DC; Romme WH; Turner MG
    Ecology; 2013 Nov; 94(11):2475-86. PubMed ID: 24400499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity.
    Andrews SF; Flanagan LB; Sharp EJ; Cai T
    Tree Physiol; 2012 Feb; 32(2):146-60. PubMed ID: 22318220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defense mechanisms of conifers : relationship of monoterpene cyclase activity to anatomical specialization and oleoresin monoterpene content.
    Lewinsohn E; Gijzen M; Savage TJ; Croteau R
    Plant Physiol; 1991 May; 96(1):38-43. PubMed ID: 16668182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.