BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 14975882)

  • 21. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings.
    Smit J; Van Den Driessche R
    Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photosynthesis-nitrogen relationships: interpretation of different patterns between Pseudotsuga menziesii and Populus x euroamericana in a mini-stand experiment.
    Ripullone F; Grassi G; Lauteri M; Borghetti M
    Tree Physiol; 2003 Feb; 23(2):137-44. PubMed ID: 12533308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variation in budburst phenology of Douglas-fir related to western spruce budworm (Lepidoptera: Tortricidae) fitness.
    Chen Z; Clancy KM; Kolb TE
    J Econ Entomol; 2003 Apr; 96(2):377-87. PubMed ID: 14994804
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Xylem cavitation in roots and stems of Douglas-fir and white fir.
    Sperry JS; Ikeda T
    Tree Physiol; 1997 Apr; 17(4):275-80. PubMed ID: 14759867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Angiosperm bark volatiles disrupt response of Douglas-fir beetle, Dendroctonus pseudotsugae, to attractant-baited traps.
    Huber DP; Borden JH
    J Chem Ecol; 2001 Feb; 27(2):217-33. PubMed ID: 14768811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene-dependent induced conifer defense. Full-length cDNA cloning of a multigene family, differential constitutive, and wound- and insect-induced expression, and cellular and subcellular localization in spruce and Douglas fir.
    Ralph SG; Hudgins JW; Jancsik S; Franceschi VR; Bohlmann J
    Plant Physiol; 2007 Jan; 143(1):410-24. PubMed ID: 17122070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vertical gradients in photosynthetic light response within an old-growth Douglas-fir and western hemlock canopy.
    Lewis JD; McKane RB; Tingey DT; Beedlow PA
    Tree Physiol; 2000 Apr; 20(7):447-456. PubMed ID: 12651440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tree-ring stable isotopes record the impact of a foliar fungal pathogen on CO(2) assimilation and growth in Douglas-fir.
    Saffell BJ; Meinzer FC; Voelker SL; Shaw DC; Brooks JR; Lachenbruch B; McKay J
    Plant Cell Environ; 2014 Jul; 37(7):1536-47. PubMed ID: 24330052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Climate on Douglas-fir (
    Levanič T; Štraus H
    Plants (Basel); 2022 Jun; 11(12):. PubMed ID: 35736722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First Report of Swiss Needle Cast Caused by Phaeocryptopus gaeumannii on Douglas-Fir in Turkey.
    Temel F; Stone JK; Johnson GR
    Plant Dis; 2003 Dec; 87(12):1536. PubMed ID: 30812399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Freezing tolerance of conifer seeds and germinants.
    Hawkins BJ; Guest HJ; Kolotelo D
    Tree Physiol; 2003 Dec; 23(18):1237-46. PubMed ID: 14652223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.
    Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R
    Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany.
    Vitali V; Büntgen U; Bauhus J
    Glob Chang Biol; 2017 Dec; 23(12):5108-5119. PubMed ID: 28556403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sites of production and occurrence of volatiles in Douglas-fir beetle,Dendroctonus pseudotsugae hopkins.
    Madden JL; Pierce HD; Borden JH; Butterfield A
    J Chem Ecol; 1988 Apr; 14(4):1305-17. PubMed ID: 24276212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of artificial and western spruce budworm (Lepidoptera: Tortricidae) defoliation on growth and biomass allocation of Douglas-fir seedlings.
    Chen Z; Kolb TE; Clancy KM
    J Econ Entomol; 2002 Jun; 95(3):587-94. PubMed ID: 12076004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mutation hotspot in the chloroplast genome of a conifer (Douglas-fir: Pseudotsuga) is caused by variability in the number of direct repeats derived from a partially duplicated tRNA gene.
    Hipkins VD; Marshall KA; Neale DB; Rottmann WH; Strauss SH
    Curr Genet; 1995 May; 27(6):572-9. PubMed ID: 7553944
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of monoterpenes in resistance of Douglas fir to western spruce budworm defoliation.
    Chen Z; Kolb TE; Clancy KM
    J Chem Ecol; 2002 May; 28(5):897-920. PubMed ID: 12049230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Within-stem variation of respiration in Pseudotsuga menziesii (Douglas-fir) trees.
    Pruyn ML; Gartner BL; Harmon ME
    New Phytol; 2002 May; 154(2):359-372. PubMed ID: 33873424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A long-read and short-read transcriptomics approach provides the first high-quality reference transcriptome and genome annotation for Pseudotsuga menziesii (Douglas-fir).
    Velasco VME; Ferreira A; Zaman S; Noordermeer D; Ensminger I; Wegrzyn JL
    G3 (Bethesda); 2023 Feb; 13(2):. PubMed ID: 36454025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impacts of water stress on phloem transport in Douglas-fir trees.
    Woodruff DR
    Tree Physiol; 2014 Jan; 34(1):5-14. PubMed ID: 24336611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.