BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 14976199)

  • 1. Mutations at the S1 sites of methionine aminopeptidases from Escherichia coli and Homo sapiens reveal the residues critical for substrate specificity.
    Li JY; Cui YM; Chen LL; Gu M; Li J; Nan FJ; Ye QZ
    J Biol Chem; 2004 May; 279(20):21128-34. PubMed ID: 14976199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of full length and truncated type I human methionine aminopeptidases expressed from Escherichia coli.
    Li JY; Chen LL; Cui YM; Luo QL; Gu M; Nan FJ; Ye QZ
    Biochemistry; 2004 Jun; 43(24):7892-8. PubMed ID: 15196033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity for inhibitors of metal-substituted methionine aminopeptidase.
    Li JY; Chen LL; Cui YM; Luo QL; Li J; Nan FJ; Ye QZ
    Biochem Biophys Res Commun; 2003 Jul; 307(1):172-9. PubMed ID: 12849997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of N-terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase.
    Liao YD; Jeng JC; Wang CF; Wang SC; Chang ST
    Protein Sci; 2004 Jul; 13(7):1802-10. PubMed ID: 15215523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S1 pocket fingerprints of human and bacterial methionine aminopeptidases determined using fluorogenic libraries of substrates and phosphorus based inhibitors.
    Poreba M; Gajda A; Picha J; Jiracek J; Marschner A; Klein CD; Salvesen GS; Drag M
    Biochimie; 2012 Mar; 94(3):704-10. PubMed ID: 22085501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing the catalytic role of Asp97 in the methionine aminopeptidase from Escherichia coli.
    Mitra S; Job KM; Meng L; Bennett B; Holz RC
    FEBS J; 2008 Dec; 275(24):6248-59. PubMed ID: 19019076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes.
    Arfin SM; Kendall RL; Hall L; Weaver LH; Stewart AE; Matthews BW; Bradshaw RA
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7714-8. PubMed ID: 7644482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular discrimination of type-I over type-II methionyl aminopeptidases.
    Swierczek K; Copik AJ; Swierczek SI; Holz RC
    Biochemistry; 2005 Sep; 44(36):12049-56. PubMed ID: 16142902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases.
    Xiao Q; Zhang F; Nacev BA; Liu JO; Pei D
    Biochemistry; 2010 Jul; 49(26):5588-99. PubMed ID: 20521764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FE(II) is the native cofactor for Escherichia coli methionine aminopeptidase.
    Chai SC; Wang WL; Ye QZ
    J Biol Chem; 2008 Oct; 283(40):26879-85. PubMed ID: 18669631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast methionine aminopeptidase I. Alteration of substrate specificity by site-directed mutagenesis.
    Walker KW; Bradshaw RA
    J Biol Chem; 1999 May; 274(19):13403-9. PubMed ID: 10224104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of an SH3-binding motif in a new class of methionine aminopeptidases from Mycobacterium tuberculosis suggests a mode of interaction with the ribosome.
    Addlagatta A; Quillin ML; Omotoso O; Liu JO; Matthews BW
    Biochemistry; 2005 May; 44(19):7166-74. PubMed ID: 15882055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single amino acid residue defines the difference in ovalicin sensitivity between type I and II methionine aminopeptidases.
    Brdlik CM; Crews CM
    J Biol Chem; 2004 Mar; 279(10):9475-80. PubMed ID: 14676204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dominant negative mutation in Saccharomyces cerevisiae methionine aminopeptidase-1 affects catalysis and interferes with the function of methionine aminopeptidase-2.
    Klinkenberg M; Ling C; Chang YH
    Arch Biochem Biophys; 1997 Nov; 347(2):193-200. PubMed ID: 9367524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and synthesis of chromogenic thiopeptolide substrates as MetAPs active site probes.
    Cui YM; Li JY; Chen LL; Li J; Ye QZ; Nan FJ
    Bioorg Med Chem; 2004 Jun; 12(11):2853-61. PubMed ID: 15142545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing the binding of Co(II)-specific inhibitors to the methionyl aminopeptidases from Escherichia coli and Pyrococcus furiosus.
    Mitra S; Sheppard G; Wang J; Bennett B; Holz RC
    J Biol Inorg Chem; 2009 May; 14(4):573-85. PubMed ID: 19198897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The specificity in vivo of two distinct methionine aminopeptidases in Saccharomyces cerevisiae.
    Chen S; Vetro JA; Chang YH
    Arch Biochem Biophys; 2002 Feb; 398(1):87-93. PubMed ID: 11811952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and mutational studies of the number of interacting divalent cations required by bacterial and human methionine aminopeptidases.
    Hu XV; Chen X; Han KC; Mildvan AS; Liu JO
    Biochemistry; 2007 Nov; 46(44):12833-43. PubMed ID: 17929833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases.
    Van Damme P; Hole K; Gevaert K; Arnesen T
    Proteomics; 2015 Jul; 15(14):2436-46. PubMed ID: 25886145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and characterization of the Streptococcus salivarius methionine aminopeptidase (MetAP).
    Boufous el H; Vadeboncoeur C
    Biochimie; 2003 Oct; 85(10):993-7. PubMed ID: 14644554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.