BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 14976242)

  • 1. The archaeal feast/famine regulatory protein: potential roles of its assembly forms for regulating transcription.
    Koike H; Ishijima SA; Clowney L; Suzuki M
    Proc Natl Acad Sci U S A; 2004 Mar; 101(9):2840-5. PubMed ID: 14976242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors.
    Yokoyama K; Ishijima SA; Clowney L; Koike H; Aramaki H; Tanaka C; Makino K; Suzuki M
    FEMS Microbiol Rev; 2006 Jan; 30(1):89-108. PubMed ID: 16438681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription regulation by feast/famine regulatory proteins, FFRPs, in archaea and eubacteria.
    Kawashima T; Aramaki H; Oyamada T; Makino K; Yamada M; Okamura H; Yokoyama K; Ishijima SA; Suzuki M
    Biol Pharm Bull; 2008 Feb; 31(2):173-86. PubMed ID: 18239270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structural code for discriminating between transcription signals revealed by the feast/famine regulatory protein DM1 in complex with ligands.
    Okamura H; Yokoyama K; Koike H; Yamada M; Shimowasa A; Kabasawa M; Kawashima T; Suzuki M
    Structure; 2007 Oct; 15(10):1325-38. PubMed ID: 17937921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The basal transcription factors TBP and TFB from the mesophilic archaeon Methanosarcina mazeii: structure and conformational changes upon interaction with stress-gene promoters.
    Thomsen J; De Biase A; Kaczanowski S; Macario AJ; Thomm M; Zielenkiewicz P; MacColl R; Conway de Macario E
    J Mol Biol; 2001 Jun; 309(3):589-603. PubMed ID: 11397082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feast/famine regulation by transcription factor FL11 for the survival of the hyperthermophilic archaeon Pyrococcus OT3.
    Yokoyama K; Ishijima SA; Koike H; Kurihara C; Shimowasa A; Kabasawa M; Kawashima T; Suzuki M
    Structure; 2007 Dec; 15(12):1542-54. PubMed ID: 18073105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The leucine-responsive regulatory proteins/feast-famine regulatory proteins: an ancient and complex class of transcriptional regulators in bacteria and archaea.
    Ziegler CA; Freddolino PL
    Crit Rev Biochem Mol Biol; 2021 Aug; 56(4):373-400. PubMed ID: 34151666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The DNA-recognition mode shared by archaeal feast/famine-regulatory proteins revealed by the DNA-binding specificities of TvFL3, FL10, FL11 and Ss-LrpB.
    Yokoyama K; Nogami H; Kabasawa M; Ebihara S; Shimowasa A; Hashimoto K; Kawashima T; Ishijima SA; Suzuki M
    Nucleic Acids Res; 2009 Jul; 37(13):4407-19. PubMed ID: 19468044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Ptr2-like activators of archaeal transcription.
    Pritchett MA; Wilkinson SP; Geiduschek EP; Ouhammouch M
    Mol Microbiol; 2009 Nov; 74(3):582-93. PubMed ID: 19775246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis for DNA strand displacement by NHEJ repair polymerases.
    Bartlett EJ; Brissett NC; Plocinski P; Carlberg T; Doherty AJ
    Nucleic Acids Res; 2016 Mar; 44(5):2173-86. PubMed ID: 26405198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA.
    Gao YG; Su SY; Robinson H; Padmanabhan S; Lim L; McCrary BS; Edmondson SP; Shriver JW; Wang AH
    Nat Struct Biol; 1998 Sep; 5(9):782-6. PubMed ID: 9731772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Archaea: The Final Frontier of Chromatin.
    Laursen SP; Bowerman S; Luger K
    J Mol Biol; 2021 Mar; 433(6):166791. PubMed ID: 33383035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A thermostable platform for transcriptional regulation: the DNA-binding properties of two Lrp homologs from the hyperthermophilic archaeon Methanococcus jannaschii.
    Ouhammouch M; Geiduschek EP
    EMBO J; 2001 Jan; 20(1-2):146-56. PubMed ID: 11226165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of an archaeal specific DNA-binding protein (Ape10b2) from Aeropyrum pernix K1.
    Kumarevel T; Sakamoto K; Gopinath SC; Shinkai A; Kumar PK; Yokoyama S
    Proteins; 2008 May; 71(3):1156-62. PubMed ID: 18004791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atypical recognition of particular DNA sequences by the archaeal chromosomal MC1 protein.
    De Vuyst G; Aci S; Genest D; Culard F
    Biochemistry; 2005 Aug; 44(30):10369-77. PubMed ID: 16042414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The orientation of DNA in an archaeal transcription initiation complex.
    Bartlett MS; Thomm M; Geiduschek EP
    Nat Struct Biol; 2000 Sep; 7(9):782-5. PubMed ID: 10966650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular machines in archaeal DNA replication.
    Beattie TR; Bell SD
    Curr Opin Chem Biol; 2011 Oct; 15(5):614-9. PubMed ID: 21852183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome segregation in Archaea: SegA- and SegB-DNA complex structures provide insights into segrosome assembly.
    Yen CY; Lin MG; Chen BW; Ng IW; Read N; Kabli AF; Wu CT; Shen YY; Chen CH; Barillà D; Sun YJ; Hsiao CD
    Nucleic Acids Res; 2021 Dec; 49(22):13150-13164. PubMed ID: 34850144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein.
    Kerr ID; Wadsworth RI; Cubeddu L; Blankenfeldt W; Naismith JH; White MF
    EMBO J; 2003 Jun; 22(11):2561-70. PubMed ID: 12773373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of a regulated archaeal triosephosphate isomerase adapted to high temperature.
    Walden H; Taylor GL; Lorentzen E; Pohl E; Lilie H; Schramm A; Knura T; Stubbe K; Tjaden B; Hensel R
    J Mol Biol; 2004 Sep; 342(3):861-75. PubMed ID: 15342242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.