These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 14976401)

  • 1. Imaging CFTR: a tail to tail dimer with a central pore.
    Schillers H; Shahin V; Albermann L; Schafer C; Oberleithner H
    Cell Physiol Biochem; 2004; 14(1-2):1-10. PubMed ID: 14976401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma membrane protein clusters appear in CFTR-expressing Xenopus laevis oocytes after cAMP stimulation.
    Schillers H; Danker T; Madeja M; Oberleithner H
    J Membr Biol; 2001 Apr; 180(3):205-12. PubMed ID: 11337892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging CFTR in its native environment.
    Schillers H
    Pflugers Arch; 2008 Apr; 456(1):163-77. PubMed ID: 18057957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of F1296 and N1303 of CFTR in induced-fit conformational change in response to ATP binding at NBD2.
    Szollosi A; Vergani P; Csanády L
    J Gen Physiol; 2010 Oct; 136(4):407-23. PubMed ID: 20876359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C.
    Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR
    Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CLIC1 chloride channel is regulated by the cystic fibrosis transmembrane conductance regulator when expressed in Xenopus oocytes.
    Edwards JC
    J Membr Biol; 2006; 213(1):39-46. PubMed ID: 17347778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different activation mechanisms of cystic fibrosis transmembrane conductance regulator expressed in Xenopus laevis oocytes.
    Webe WM; Segal A; Vankeerberghen A; Cassiman JJ; Van Driessche W
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Oct; 130(3):521-31. PubMed ID: 11913463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
    Csanády L; Chan KW; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M; Dong K; Egan ME; Giebisch GH; Boulpaep EL; Hebert SC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6082-7. PubMed ID: 20231442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the heterodimeric interface region of the nucleotide binding domain-2 (NBD2) in the CFTR quaternary structure and membrane stability.
    Micoud J; Chauvet S; Scheckenbach KE; Alfaidy N; Chanson M; Benharouga M
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt A):2420-31. PubMed ID: 26083625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. cAMP-regulated trafficking of epitope-tagged CFTR.
    Howard M; Jilling T; DuVall M; Frizzell RA
    Kidney Int; 1996 Jun; 49(6):1642-8. PubMed ID: 8743469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular cysteines of the cystic fibrosis transmembrane conductance regulator (CFTR) modulate channel gating.
    Ketchum CJ; Yue H; Alessi KA; Devidas S; Guggino WB; Maloney PC
    Cell Physiol Biochem; 2002; 12(1):1-8. PubMed ID: 11914543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
    Csanády L; Nairn AC; Gadsby DC
    J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.
    Vergani P; Lockless SW; Nairn AC; Gadsby DC
    Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metformin treatment of diabetes mellitus increases the risk for pancreatitis in patients bearing the CFTR-mutation S573C.
    Kongsuphol P; Cassidy D; Romeiras F; Schreiber R; Mehta A; Kunzelmann K
    Cell Physiol Biochem; 2010; 25(4-5):389-96. PubMed ID: 20332619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CFTR regulation of epithelial sodium channel.
    Qadri YJ; Cormet-Boyaka E; Benos DJ; Berdiev BK
    Methods Mol Biol; 2011; 742():35-50. PubMed ID: 21547725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CFTR: covalent modification of cysteine-substituted channels expressed in Xenopus oocytes shows that activation is due to the opening of channels resident in the plasma membrane.
    Liu X; Smith SS; Sun F; Dawson DC
    J Gen Physiol; 2001 Oct; 118(4):433-46. PubMed ID: 11585853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity.
    Wang S; Yue H; Derin RB; Guggino WB; Li M
    Cell; 2000 Sep; 103(1):169-79. PubMed ID: 11051556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of CFTR trafficking by its R domain.
    Lewarchik CM; Peters KW; Qi J; Frizzell RA
    J Biol Chem; 2008 Oct; 283(42):28401-12. PubMed ID: 18694937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulated trafficking of the CFTR chloride channel.
    Kleizen B; Braakman I; de Jonge HR
    Eur J Cell Biol; 2000 Aug; 79(8):544-56. PubMed ID: 11001491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.