BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 14976554)

  • 1. Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control.
    Nielsen KH; Szamecz B; Valásek L; Jivotovskaya A; Shin BS; Hinnebusch AG
    EMBO J; 2004 Mar; 23(5):1166-77. PubMed ID: 14976554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of translational control of eukaryotic gene expression using yeast.
    Hinnebusch AG; Asano K; Olsen DS; Phan L; Nielsen KH; Valásek L
    Ann N Y Acad Sci; 2004 Dec; 1038():60-74. PubMed ID: 15838098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection.
    Valásek L; Nielsen KH; Zhang F; Fekete CA; Hinnebusch AG
    Mol Cell Biol; 2004 Nov; 24(21):9437-55. PubMed ID: 15485912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A subcomplex of three eIF3 subunits binds eIF1 and eIF5 and stimulates ribosome binding of mRNA and tRNA(i)Met.
    Phan L; Schoenfeld LW; Valásek L; Nielsen KH; Hinnebusch AG
    EMBO J; 2001 Jun; 20(11):2954-65. PubMed ID: 11387228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast.
    Jivotovskaya AV; Valásek L; Hinnebusch AG; Nielsen KH
    Mol Cell Biol; 2006 Feb; 26(4):1355-72. PubMed ID: 16449648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo.
    Fekete CA; Applefield DJ; Blakely SA; Shirokikh N; Pestova T; Lorsch JR; Hinnebusch AG
    EMBO J; 2005 Oct; 24(20):3588-601. PubMed ID: 16193068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation.
    Asano K; Shalev A; Phan L; Nielsen K; Clayton J; Valásek L; Donahue TF; Hinnebusch AG
    EMBO J; 2001 May; 20(9):2326-37. PubMed ID: 11331597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Related eIF3 subunits TIF32 and HCR1 interact with an RNA recognition motif in PRT1 required for eIF3 integrity and ribosome binding.
    Valásek L; Phan L; Schoenfeld LW; Valásková V; Hinnebusch AG
    EMBO J; 2001 Feb; 20(4):891-904. PubMed ID: 11179233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo.
    Olsen DS; Savner EM; Mathew A; Zhang F; Krishnamoorthy T; Phan L; Hinnebusch AG
    EMBO J; 2003 Jan; 22(2):193-204. PubMed ID: 12514125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA.
    Ji H; Fraser CS; Yu Y; Leary J; Doudna JA
    Proc Natl Acad Sci U S A; 2004 Dec; 101(49):16990-5. PubMed ID: 15563596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of the RNP1 motif in PRT1 with HCR1 promotes 40S binding of eukaryotic initiation factor 3 in yeast.
    Nielsen KH; Valásek L; Sykes C; Jivotovskaya A; Hinnebusch AG
    Mol Cell Biol; 2006 Apr; 26(8):2984-98. PubMed ID: 16581774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative model for translational control of the GCN4 gene of Saccharomyces cerevisiae.
    Abastado JP; Miller PF; Hinnebusch AG
    New Biol; 1991 May; 3(5):511-24. PubMed ID: 1883814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translation initiation at non-AUG codons mediated by weakened association of eukaryotic initiation factor (eIF) 2 subunits.
    Hashimoto NN; Carnevalli LS; Castilho BA
    Biochem J; 2002 Oct; 367(Pt 2):359-68. PubMed ID: 12137565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of mammalian 48S ribosomal translation initiation complex.
    Majumdar R; Chaudhuri J; Maitra U
    Methods Enzymol; 2007; 430():179-208. PubMed ID: 17913639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-termination ribosome interactions with the 5'UTR modulate yeast mRNA stability.
    Vilela C; Ramirez CV; Linz B; Rodrigues-Pousada C; McCarthy JE
    EMBO J; 1999 Jun; 18(11):3139-52. PubMed ID: 10357825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GCD2, a translational repressor of the GCN4 gene, has a general function in the initiation of protein synthesis in Saccharomyces cerevisiae.
    Foiani M; Cigan AM; Paddon CJ; Harashima S; Hinnebusch AG
    Mol Cell Biol; 1991 Jun; 11(6):3203-16. PubMed ID: 2038326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirements for intercistronic distance and level of eukaryotic initiation factor 2 activity in reinitiation on GCN4 mRNA vary with the downstream cistron.
    Grant CM; Miller PF; Hinnebusch AG
    Mol Cell Biol; 1994 Apr; 14(4):2616-28. PubMed ID: 8139562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosomal protein L33 is required for ribosome biogenesis, subunit joining, and repression of GCN4 translation.
    Martín-Marcos P; Hinnebusch AG; Tamame M
    Mol Cell Biol; 2007 Sep; 27(17):5968-85. PubMed ID: 17548477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation.
    Algire MA; Maag D; Lorsch JR
    Mol Cell; 2005 Oct; 20(2):251-62. PubMed ID: 16246727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo.
    Valásek L; Nielsen KH; Hinnebusch AG
    EMBO J; 2002 Nov; 21(21):5886-98. PubMed ID: 12411506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.