These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 14976761)

  • 1. [Molecular mechanisms of long-term potentiation in hihhocampus].
    Miyamoto E; Fukunaga K
    Tanpakushitsu Kakusan Koso; 2004 Feb; 49(3 Suppl):391-7. PubMed ID: 14976761
    [No Abstract]   [Full Text] [Related]  

  • 2. Molecular and cellular cognitive studies of the role of synaptic plasticity in memory.
    Silva AJ
    J Neurobiol; 2003 Jan; 54(1):224-37. PubMed ID: 12486706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene targeting: a new approach for the analysis of mammalian memory and learning.
    Tonegawa S
    Prog Clin Biol Res; 1994; 390():5-18. PubMed ID: 7724650
    [No Abstract]   [Full Text] [Related]  

  • 4. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties.
    Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M
    Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-methyl-D-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus.
    Zhong WX; Dong ZF; Tian M; Cao J; Xu L; Luo JH
    Neuroscience; 2006 Sep; 141(3):1399-413. PubMed ID: 16766131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Regulation of synaptic efficacy by neural activity in the hippocampus].
    Fukunaga K; Miyamoto E
    Tanpakushitsu Kakusan Koso; 2000 Feb; 45(3 Suppl):474-82. PubMed ID: 10707659
    [No Abstract]   [Full Text] [Related]  

  • 7. Protein phosphatase 1 is a molecular constraint on learning and memory.
    Genoux D; Haditsch U; Knobloch M; Michalon A; Storm D; Mansuy IM
    Nature; 2002 Aug; 418(6901):970-5. PubMed ID: 12198546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity-specific phosphorylation of CaMKII, MAP-kinases and CREB during late-LTP in rat hippocampal slices in vitro.
    Ahmed T; Frey JU
    Neuropharmacology; 2005 Sep; 49(4):477-92. PubMed ID: 16005911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats.
    Haberny SL; Carr KD
    Neuroscience; 2005; 132(4):1035-43. PubMed ID: 15857708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice.
    Moriguchi S; Han F; Nakagawasai O; Tadano T; Fukunaga K
    J Neurochem; 2006 Apr; 97(1):22-9. PubMed ID: 16515554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation.
    Krapivinsky G; Medina I; Krapivinsky L; Gapon S; Clapham DE
    Neuron; 2004 Aug; 43(4):563-74. PubMed ID: 15312654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Neuronal plasticity and protein phosphatase].
    Fukunaga K; Miyamoto E
    Tanpakushitsu Kakusan Koso; 1998 Jun; 43(8 Suppl):1062-71. PubMed ID: 9655964
    [No Abstract]   [Full Text] [Related]  

  • 13. The molecules of forgetfulness.
    Silva AJ; Josselyn SA
    Nature; 2002 Aug; 418(6901):929-30. PubMed ID: 12198533
    [No Abstract]   [Full Text] [Related]  

  • 14. Hippocampal CRE-mediated gene expression is required for contextual memory formation.
    Athos J; Impey S; Pineda VV; Chen X; Storm DR
    Nat Neurosci; 2002 Nov; 5(11):1119-20. PubMed ID: 12368807
    [No Abstract]   [Full Text] [Related]  

  • 15. [Molecular mechanisms for memory formation].
    Manabe T
    Brain Nerve; 2008 Jul; 60(7):707-15. PubMed ID: 18646610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats.
    Oomura Y; Hori N; Shiraishi T; Fukunaga K; Takeda H; Tsuji M; Matsumiya T; Ishibashi M; Aou S; Li XL; Kohno D; Uramura K; Sougawa H; Yada T; Wayner MJ; Sasaki K
    Peptides; 2006 Nov; 27(11):2738-49. PubMed ID: 16914228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity.
    Blitzer RD; Iyengar R; Landau EM
    Biol Psychiatry; 2005 Jan; 57(2):113-9. PubMed ID: 15652868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus.
    Miyamoto E
    J Pharmacol Sci; 2006; 100(5):433-42. PubMed ID: 16799259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memory. Why is the cortex a slow learner?
    Lisman J; Morris RG
    Nature; 2001 May; 411(6835):248-9. PubMed ID: 11357109
    [No Abstract]   [Full Text] [Related]  

  • 20. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation.
    Zhao D; Watson JB; Xie CW
    J Neurophysiol; 2004 Nov; 92(5):2853-8. PubMed ID: 15212428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.