BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 14977147)

  • 1. Remediation of coal mining wastewaters using chitosan microspheres.
    Geremias R; Pedrosa RC; Benassi JC; Fávere VT; Stolberg J; Menezes CT; Laranjeira MC
    Environ Technol; 2003 Dec; 24(12):1509-15. PubMed ID: 14977147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of chitosan microspheres as remedial material for acidity and iron (III) contents of coal mining wastewaters.
    Fávere VT; Laus R; Laranjeira MC; Martins AO; Pedrosa RC
    Environ Technol; 2004 Aug; 25(8):861-6. PubMed ID: 15366552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of remediation of coal mining wastewater by chitosan microspheres using biomarkers.
    Benassi JC; Laus R; Geremias R; Lima PL; Menezes CT; Laranjeira MC; Wilhelm-Filho D; Fávere VT; Pedrosa RC
    Arch Environ Contam Toxicol; 2006 Nov; 51(4):633-40. PubMed ID: 16988869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres.
    Laus R; Geremias R; Vasconcelos HL; Laranjeira MC; Fávere VT
    J Hazard Mater; 2007 Oct; 149(2):471-4. PubMed ID: 17499431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater--a short review.
    Bhatnagar A; Sillanpää M
    Adv Colloid Interface Sci; 2009 Nov; 152(1-2):26-38. PubMed ID: 19833317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-cost adsorbents for heavy metals uptake from contaminated water: a review.
    Babel S; Kurniawan TA
    J Hazard Mater; 2003 Feb; 97(1-3):219-43. PubMed ID: 12573840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of adsorption capacity of young brown coals and humic acids prepared from different coal mines in Anatolia.
    Pehlivan E; Arslan G
    J Hazard Mater; 2006 Nov; 138(2):401-8. PubMed ID: 16962233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microspheres of chitosan/poly(vinylalcohol) incorporating tetrasulphonated copper (II) phthalocyanine: preparation and characterization.
    Stolberg J; Laranjeira MC; Sanchez MN; Klug M; Fávere VT
    J Microencapsul; 1999; 16(4):431-8. PubMed ID: 10420329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of polyaluminium ferric chloride (PAFC) as a composite coagulant for water and wastewater treatment.
    Gao B; Yue Q; Miao J
    Water Sci Technol; 2003; 47(1):127-32. PubMed ID: 12578184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved performance of a chitosan-based adsorbent for the sequestration of some transition metals.
    Navarro RR; Tatsumi K
    Water Sci Technol; 2001; 43(11):9-16. PubMed ID: 11443991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of copper, chromium, and arsenic from CCA-treated wood onto chitin and chitosan.
    Kartal SN; Imamura Y
    Bioresour Technol; 2005 Feb; 96(3):389-92. PubMed ID: 15474943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilized chitosan as a selective absorbent for the nickel removal in water sample.
    Wu JM; Wang YY
    J Environ Sci (China); 2003 Sep; 15(5):633-8. PubMed ID: 14562924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of metals from aqueous solutions using natural chitinous materials.
    Rae IB; Gibb SW
    Water Sci Technol; 2003; 47(10):189-96. PubMed ID: 12862235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical modification of chitosan and equilibrium study for mercury ion removal.
    Jeon C; Höll WH
    Water Res; 2003 Nov; 37(19):4770-80. PubMed ID: 14568064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of allura red dye by cross-linked chitosan from shrimp waste.
    Sánchez-Duarte RG; Sánchez-Machado DI; López-Cervantes J; Correa-Murrieta MA
    Water Sci Technol; 2012; 65(4):618-23. PubMed ID: 22277220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flocculation of kaolinite suspensions in water by chitosan.
    Divakaran R; Pillai VN
    Water Res; 2001 Nov; 35(16):3904-8. PubMed ID: 12230172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters.
    Paulino AT; Minasse FA; Guilherme MR; Reis AV; Muniz EC; Nozaki J
    J Colloid Interface Sci; 2006 Sep; 301(2):479-87. PubMed ID: 16780853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of kaolinite and titanium dioxide flocculation using chitosan--assistance by fulvic acids?
    Divakaran R; Pillai VN
    Water Res; 2004 Apr; 38(8):2135-43. PubMed ID: 15087195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removing heavy metals from wastewaters with use of shales accompanying the coal beds.
    Jabłońska B; Siedlecka E
    J Environ Manage; 2015 May; 155():58-66. PubMed ID: 25770963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass.
    Chandra Sekhar K; Kamala CT; Chary NS; Sastry AR; Nageswara Rao T; Vairamani M
    J Hazard Mater; 2004 Apr; 108(1-2):111-7. PubMed ID: 15081169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.