These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
11. Cardiac expression and location of hexokinase changes in a mouse model of pure creatine deficiency. Branovets J; Karro N; Barsunova K; Laasmaa M; Lygate CA; Vendelin M; Birkedal R Am J Physiol Heart Circ Physiol; 2021 Feb; 320(2):H613-H629. PubMed ID: 33337958 [TBL] [Abstract][Full Text] [Related]
12. High-energy phosphotransfer in the failing mouse heart: role of adenylate kinase and glycolytic enzymes. Aksentijević D; Lygate CA; Makinen K; Zervou S; Sebag-Montefiore L; Medway D; Barnes H; Schneider JE; Neubauer S Eur J Heart Fail; 2010 Dec; 12(12):1282-9. PubMed ID: 20940173 [TBL] [Abstract][Full Text] [Related]
13. Adenylate kinase-catalyzed phosphotransfer in the myocardium : increased contribution in heart failure. Dzeja PP; Vitkevicius KT; Redfield MM; Burnett JC; Terzic A Circ Res; 1999 May; 84(10):1137-43. PubMed ID: 10347088 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial creatine kinase is critically necessary for normal myocardial high-energy phosphate metabolism. Spindler M; Niebler R; Remkes H; Horn M; Lanz T; Neubauer S Am J Physiol Heart Circ Physiol; 2002 Aug; 283(2):H680-7. PubMed ID: 12124216 [TBL] [Abstract][Full Text] [Related]
15. Caffeine supplementation in diet mitigates Aeromonas hydrophila-induced impairment of the gill phosphotransfer network in grass carp Ctenopharyngodon idella. Baldissera MD; Freitas Souza C; Dias JB; Da Silva AS; Baldisserotto B Microb Pathog; 2019 Nov; 136():103710. PubMed ID: 31493503 [TBL] [Abstract][Full Text] [Related]
16. Coupling of cell energetics with membrane metabolic sensing. Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out. Abraham MR; Selivanov VA; Hodgson DM; Pucar D; Zingman LV; Wieringa B; Dzeja PP; Alekseev AE; Terzic A J Biol Chem; 2002 Jul; 277(27):24427-34. PubMed ID: 11967264 [TBL] [Abstract][Full Text] [Related]
17. Changes in mRNA expression profile underlie phenotypic adaptations in creatine kinase-deficient muscles. de Groof AJ; Smeets B; Groot Koerkamp MJ; Mul AN; Janssen EE; Tabak HF; Wieringa B FEBS Lett; 2001 Sep; 506(1):73-8. PubMed ID: 11591374 [TBL] [Abstract][Full Text] [Related]
18. Effects of ischemia on skeletal muscle energy metabolism in mice lacking creatine kinase monitored by in vivo 31P nuclear magnetic resonance spectroscopy. in 't Zandt HJ; Oerlemans F; Wieringa B; Heerschap A NMR Biomed; 1999 Oct; 12(6):327-34. PubMed ID: 10516614 [TBL] [Abstract][Full Text] [Related]
19. Changes in the cerebral phosphotransfer network impair energetic homeostasis in an aflatoxin B Baldissera MD; Souza CF; Zeppenfeld CC; Descovi S; da Silva AS; Baldisserotto B Fish Physiol Biochem; 2018 Aug; 44(4):1051-1059. PubMed ID: 29546539 [TBL] [Abstract][Full Text] [Related]
20. Myofibrillar or mitochondrial creatine kinase deficiency alone does not impair mouse diaphragm isotonic function. Watchko JF; Daood MJ; Wieringa B; Koretsky AP J Appl Physiol (1985); 2000 Mar; 88(3):973-80. PubMed ID: 10710393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]