These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 14977179)

  • 1. The fractal architecture of cytoplasmic organization: scaling, kinetics and emergence in metabolic networks.
    Aon MA; O'Rourke B; Cortassa S
    Mol Cell Biochem; 2004; 256-257(1-2):169-84. PubMed ID: 14977179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifractality in intracellular enzymatic reactions.
    Aranda JS; Salgado E; Muñoz-Diosdado A
    J Theor Biol; 2006 May; 240(2):209-17. PubMed ID: 16256143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulations of enzymatic reactions in crowded media. Effect of the enzyme-obstacle relative size.
    Pitulice L; Vilaseca E; Pastor I; Madurga S; Garcés JL; Isvoran A; Mas F
    Math Biosci; 2014 May; 251():72-82. PubMed ID: 24680707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation.
    Berry H
    Biophys J; 2002 Oct; 83(4):1891-901. PubMed ID: 12324410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Michaelis-Menten mechanism reconsidered: implications of fractal kinetics.
    Savageau MA
    J Theor Biol; 1995 Sep; 176(1):115-24. PubMed ID: 7475096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of fractal kinetics on molecular recognition.
    Savageau MA
    J Mol Recognit; 1993 Dec; 6(4):149-57. PubMed ID: 7917410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways.
    Savageau MA
    Biosystems; 1998; 47(1-2):9-36. PubMed ID: 9715749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal michaelis-menten kinetics under steady state conditions: Application to mibefradil.
    Marsh RE; Tuszyński JA
    Pharm Res; 2006 Dec; 23(12):2760-7. PubMed ID: 17063399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loop-erased random walk on a percolation cluster: crossover from Euclidean to fractal geometry.
    Daryaei E; Rouhani S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062101. PubMed ID: 25019719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fractal analysis approach to viscoelasticity of physically cross-linked barley beta-glucan gel networks.
    Kontogiorgos V; Vaikousi H; Lazaridou A; Biliaderis CG
    Colloids Surf B Biointerfaces; 2006 May; 49(2):145-52. PubMed ID: 16621469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function of metabolic and organelle networks in crowded and organized media.
    Aon MA; Cortassa S
    Front Physiol; 2014; 5():523. PubMed ID: 25653618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unravelling the impact of obstacles in diffusion and kinetics of an enzyme catalysed reaction.
    Mourão M; Kreitman D; Schnell S
    Phys Chem Chem Phys; 2014 Mar; 16(10):4492-503. PubMed ID: 24141265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice animals in diffusion limited binary colloidal system.
    Shireen Z; Babu SB
    J Chem Phys; 2017 Aug; 147(5):054904. PubMed ID: 28789541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Percolation transition at growing spatiotemporal fractal patterns in models of mesoscopic neural networks.
    Franović I; Miljković V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061923. PubMed ID: 19658540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling fractal-like drug elimination kinetics using an interacting random-walk model.
    Marsh RE; Riauka TA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031902. PubMed ID: 17500721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Michaelis-Menten kinetics under spatially constrained conditions: application to mibefradil pharmacokinetics.
    Kosmidis K; Karalis V; Argyrakis P; Macheras P
    Biophys J; 2004 Sep; 87(3):1498-506. PubMed ID: 15345531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modelling of dynamics and control in metabolic networks. II. Simple dimeric enzymes.
    Palsson BO; Jamier R; Lightfoot EN
    J Theor Biol; 1984 Nov; 111(2):303-21. PubMed ID: 6513573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer adsorption on a fractal substrate: numerical study.
    Blavatska V; Janke W
    J Chem Phys; 2012 Mar; 136(10):104907. PubMed ID: 22423861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface dynamics and kinetic roughening in fractals.
    Asikainen J; Majaniemi S; Dubé M; Ala-Nissila T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):052104. PubMed ID: 12059616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractal kinetic analysis of the enzymatic saccharification of cellulose under different conditions.
    Wang Z; Feng H
    Bioresour Technol; 2010 Oct; 101(20):7995-8000. PubMed ID: 20542686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.