These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 14977226)

  • 1. Sympathetically induced spontaneous fluctuations of the photoplethysmographic signal.
    Khanokh B; Slovik Y; Landau D; Nitzan M
    Med Biol Eng Comput; 2004 Jan; 42(1):80-5. PubMed ID: 14977226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Right-left correlation of the sympathetically induced fluctuations of photoplethysmographic signal in diabetic and non-diabetic subjects.
    Buchs A; Slovik Y; Rapoport M; Rosenfeld C; Khanokh B; Nitzan M
    Med Biol Eng Comput; 2005 Mar; 43(2):252-7. PubMed ID: 15865136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of thoracic sympathectomy on cardiac induced oscillations in tissue blood volume.
    Nitzan M; Babchenko A; Shemesh D; Alberton J
    Med Biol Eng Comput; 2001 Sep; 39(5):579-83. PubMed ID: 11712655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Very low frequency variability in arterial blood pressure and blood volume pulse.
    Nitzan M; Babchenko A; Khanokh B
    Med Biol Eng Comput; 1999 Jan; 37(1):54-8. PubMed ID: 10396842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The variability of the photoplethysmographic signal--a potential method for the evaluation of the autonomic nervous system.
    Nitzan M; Babchenko A; Khanokh B; Landau D
    Physiol Meas; 1998 Feb; 19(1):93-102. PubMed ID: 9522390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous fluctuations in the peripheral photoplethysmographic waveform: roles of arterial pressure and muscle sympathetic nerve activity.
    Chan GS; Fazalbhoy A; Birznieks I; Macefield VG; Middleton PM; Lovell NH
    Am J Physiol Heart Circ Physiol; 2012 Feb; 302(3):H826-36. PubMed ID: 22114133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power spectrum analysis of spontaneous fluctuations in the photoplethysmographic signal.
    Nitzan M; de Boer H; Turivnenko S; Babchenko A; Sapoznikov D
    J Basic Clin Physiol Pharmacol; 1994; 5(3-4):269-76. PubMed ID: 8736036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomic control of skin microvessels: assessment by power spectrum of photoplethysmographic waves.
    Bernardi L; Radaelli A; Solda PL; Coats AJ; Reeder M; Calciati A; Garrard CS; Sleight P
    Clin Sci (Lond); 1996 May; 90(5):345-55. PubMed ID: 8665771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoplethysmographic assessment of hemodynamic variations using pulsatile tissue blood volume.
    Foo JY; Lim CS; Wilson SJ
    Angiology; 2008 Dec-2009 Jan; 59(6):745-52. PubMed ID: 18388056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low frequency spontaneous fluctuations in tissue blood volume in neonates.
    Babchenko A; Khanokh B; Nitzan M; Arad I
    J Basic Clin Physiol Pharmacol; 1999; 10(4):259-72. PubMed ID: 10631591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory variations in the photoplethysmographic waveform amplitude depend on type of pulse oximetry device.
    Høiseth LØ; Hoff IE; Hagen OA; Kirkebøen KA; Landsverk SA
    J Clin Monit Comput; 2016 Jun; 30(3):317-25. PubMed ID: 26067403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic noninvasive measurement of systolic blood pressure using photoplethysmography.
    Nitzan M; Patron A; Glik Z; Weiss AT
    Biomed Eng Online; 2009 Oct; 8():28. PubMed ID: 19857254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Similarity in bilateral photoplethysmographic peripheral pulse wave characteristics at the ears, thumbs and toes.
    Allen J; Murray A
    Physiol Meas; 2000 Aug; 21(3):369-77. PubMed ID: 10984205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The difference in pulse transit time to the toe and finger measured by photoplethysmography.
    Nitzan M; Khanokh B; Slovik Y
    Physiol Meas; 2002 Feb; 23(1):85-93. PubMed ID: 11876244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiration-induced changes in tissue blood volume distal to occluded artery, measured by photoplethysmography.
    Nitzan M; Faib I; Friedman H
    J Biomed Opt; 2006; 11(4):040506. PubMed ID: 16965128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulse photoplethysmographic amplitude and heart rate variability during laparoscopic cholecystectomy: A prospective observational study.
    Colombo R; Raimondi F; Corona A; Marchi A; Borghi B; Pellegrin S; Bergomi P; Fossali T; Guzzetti S; Porta A
    Eur J Anaesthesiol; 2017 Aug; 34(8):526-533. PubMed ID: 28617680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting differences in volume pulse wave parameters among fingers and toes in four different postures.
    Yan T; Yang L; Zhang S; Yang Y; Li X
    Biomed Mater Eng; 2015; 26 Suppl 1():S389-94. PubMed ID: 26406028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes in peripheral pulse timing characteristics at the ears, fingers and toes.
    Allen J; Murray A
    J Hum Hypertens; 2002 Oct; 16(10):711-7. PubMed ID: 12420195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoplethysmographic measurement of changes in total and pulsatile tissue blood volume, following sympathetic blockade.
    Babchenko A; Davidson E; Ginosar Y; Kurz V; Faib I; Adler D; Nitzan M
    Physiol Meas; 2001 May; 22(2):389-96. PubMed ID: 11411248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites.
    Allen J; Murray A
    Physiol Meas; 2003 May; 24(2):297-307. PubMed ID: 12812416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.