These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 14977234)

  • 1. Non-invasive estimation of myocardial infarction by means of a heart-model-based imaging approach: a simulation study.
    Li G; He B
    Med Biol Eng Comput; 2004 Jan; 42(1):128-36. PubMed ID: 14977234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model.
    He B; Li G; Zhang X
    IEEE Trans Biomed Eng; 2003 Oct; 50(10):1190-202. PubMed ID: 14560773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive three-dimensional activation time imaging of ventricular excitation by means of a heart-excitation model.
    He B; Li G; Zhang X
    Phys Med Biol; 2002 Nov; 47(22):4063-78. PubMed ID: 12476982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive reconstruction of three-dimensional ventricular activation sequence from the inverse solution of distributed equivalent current density.
    Liu Z; Liu C; He B
    IEEE Trans Med Imaging; 2006 Oct; 25(10):1307-18. PubMed ID: 17024834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of the site of origin of reentrant arrhythmia from body surface potential maps: a model study.
    Liu C; Li G; He B
    Phys Med Biol; 2005 Apr; 50(7):1421-32. PubMed ID: 15798333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive imaging of 3-dimensional myocardial infarction from the inverse solution of equivalent current density in pathological hearts.
    Zhou Z; Han C; Yang T; He B
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):468-76. PubMed ID: 25248174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional cardiac electrical imaging from intracavity recordings.
    He B; Liu C; Zhang Y
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1454-60. PubMed ID: 17694866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial resolution of body surface potential and Laplacian pace mapping.
    Li G; Lian J; He B
    Pacing Clin Electrophysiol; 2002 Apr; 25(4 Pt 1):420-9. PubMed ID: 11991366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of spatial resolution of pace mapping when using body surface potentials.
    Hren R; Punske BB; Stroink G
    Med Biol Eng Comput; 1999 Jul; 37(4):477-81. PubMed ID: 10696705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The uniform double layer model and myocardial infarction: forward solution consideration.
    Tinová M; Huiskamp GJ; Turzová M; Tysler M
    Bratisl Lek Listy; 1996 Sep; 97(9):558-61. PubMed ID: 8948153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional activation sequence imaging in a rabbit model.
    Han C; Liu Z; Liu C; Pogwizd S; He B
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5609-11. PubMed ID: 18003284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpolation of body surface potential maps.
    Schijvenaars BJ; Kors JA; van Herpen G; Kornreich F; van Bemmel JH
    J Electrocardiol; 1995; 28 Suppl():104-9. PubMed ID: 8656096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the estimation of the Laplacian electrocardiogram during ventricular activation.
    Wu D; Tsai HC; He B
    Ann Biomed Eng; 1999; 27(6):731-45. PubMed ID: 10625146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of body surface Laplacian and potential maps during paced ventricular activation.
    Ono K; Hosaka H; He B
    Methods Inf Med; 1997 Dec; 36(4-5):336-9. PubMed ID: 9470393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the Location and Extent of Myocardial Infarctions With Inverse ECG Modeling and Spatiotemporal Regularization.
    Yao B; Zhu R; Yang H
    IEEE J Biomed Health Inform; 2018 Sep; 22(5):1445-1455. PubMed ID: 29990091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Building maps of local apparent conductivity of the epicardium with a 2-D electrophysiological model of the heart.
    Moreau-Villéger V; Delingette H; Sermesant M; Ashikaga H; McVeigh E; Ayache N
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1457-66. PubMed ID: 16916080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved estimation of pericardial potentials from body-surface maps using individualized torso models.
    Arthur RM; Beetner DG; Ambos HD; Cain ME
    J Electrocardiol; 1998; 31 Suppl():106-13. PubMed ID: 9988013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the location of myocardial infarction on the spectral characteristics of ventricular fibrillation.
    Sánchez-Muñoz JJ; Rojo-Alvarez JL; García-Alberola A; Everss E; Requena-Carrión J; Ortiz M; Alonso-Atienza F; Valdés-Chavarri M
    Pacing Clin Electrophysiol; 2008 Jun; 31(6):660-5. PubMed ID: 18507537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of the site of origin of cardiac activation by means of a heart-model-based electrocardiographic imaging approach.
    Li G; He B
    IEEE Trans Biomed Eng; 2001 Jun; 48(6):660-9. PubMed ID: 11396596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of heart-surface potentials using regularized multipole sources.
    Beetner DG; Arthur RM
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1366-73. PubMed ID: 15311821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.