These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 14977316)

  • 1. A mechanistic model for mercury capture with in situ-generated titania particles: role of water vapor.
    Rodríguez S; Almquist C; Lee TG; Furuuchi M; Hedrick E; Biswas P
    J Air Waste Manag Assoc; 2004 Feb; 54(2):149-56. PubMed ID: 14977316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal.
    Pitoniak E; Wu CY; Mazyck DW; Powers KW; Sigmund W
    Environ Sci Technol; 2005 Mar; 39(5):1269-74. PubMed ID: 15787366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural effect of the in situ generated titania on its ability to oxidize and capture the gas-phase elemental mercury.
    Lee TG; Hyun JE
    Chemosphere; 2006 Jan; 62(1):26-33. PubMed ID: 15949836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas-phase mercury reduction to measure total mercury in the flue gas of a coal-fired boiler.
    Meischen SJ; Van Pelt VJ; Zarate EA; Stephens EA
    J Air Waste Manag Assoc; 2004 Jan; 54(1):60-7. PubMed ID: 14871013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of mercury vapor emissions from combustion flue gas.
    Yan R; Liang DT; Tay JH
    Environ Sci Pollut Res Int; 2003; 10(6):399-407. PubMed ID: 14690030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Removal of gaseous elemental mercury over cerium doped low vanadium loading V2O5-WO3/TiO2 in simulated coal-fired flue gas].
    Wan Q; Duan L; He KB; Chen L; Li JH
    Huan Jing Ke Xue; 2011 Sep; 32(9):2800-4. PubMed ID: 22165254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface compositions of carbon sorbents exposed to simulated low-rank coal flue gases.
    Olson ES; Crocker CR; Benson SA; Pavlish JH; Holmes MJ
    J Air Waste Manag Assoc; 2005 Jun; 55(6):747-54. PubMed ID: 16022412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO
    Zhang S; Zhao Y; Wang Z; Zhang J; Wang L; Zheng C
    J Environ Sci (China); 2017 Mar; 53():141-150. PubMed ID: 28372738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants.
    Liu SH; Yan NQ; Liu ZR; Qu Z; Wang HP; Chang SG; Miller C
    Environ Sci Technol; 2007 Feb; 41(4):1405-12. PubMed ID: 17593749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous photocatalytic oxidation of acetone for airpurification by near UV-irradiated titanium dioxide.
    Chang CP; Chen JN; Lu MC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 Jun; 38(6):1131-43. PubMed ID: 12774914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting extents of mercury oxidation in coal-derived flue gases.
    Niksa S; Fujiwara N
    J Air Waste Manag Assoc; 2005 Jul; 55(7):930-9. PubMed ID: 16111132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas.
    Niksa S; Fujiwara N
    J Air Waste Manag Assoc; 2005 Dec; 55(12):1866-75. PubMed ID: 16408691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CeO2-TiO2 sorbents for the removal of elemental mercury from syngas.
    Zhou J; Hou W; Qi P; Gao X; Luo Z; Cen K
    Environ Sci Technol; 2013 Sep; 47(17):10056-62. PubMed ID: 23931010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.
    Li H; Wu CY; Li Y; Zhang J
    Environ Sci Technol; 2011 Sep; 45(17):7394-400. PubMed ID: 21770402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke.
    Huawei Z; Xiuli L; Li W; Peng L
    ScientificWorldJournal; 2014; 2014():260141. PubMed ID: 25309948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of pressure drop and flow redistribution on modeling mercury control using sorbent injection in baghouse filters.
    Flora JR; Hargis RA; O'Dowd WJ; Karash A; Pennline HW; Vidic RD
    J Air Waste Manag Assoc; 2006 Mar; 56(3):343-9. PubMed ID: 16573197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dramatically improved mercury removal.
    Betts K
    Environ Sci Technol; 2003 Aug; 37(15):283A-284A. PubMed ID: 12966960
    [No Abstract]   [Full Text] [Related]  

  • 19. Modeling sorbent injection for mercury control in baghouse filters: I--model development and sensitivity analysis.
    Flora JR; Hargis RA; O'Dowd WJ; Pennline HW; Vidic RD
    J Air Waste Manag Assoc; 2003 Apr; 53(4):478-88. PubMed ID: 12708512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations.
    Niksa S; Fujiwara N
    J Air Waste Manag Assoc; 2005 Jul; 55(7):970-7. PubMed ID: 16111136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.