BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 14977326)

  • 1. A model of high-frequency oscillatory potentials in retinal ganglion cells.
    Kenyon GT; Moore B; Jeffs J; Denning KS; Stephens GJ; Travis BJ; George JS; Theiler J; Marshak DW
    Vis Neurosci; 2003; 20(5):465-80. PubMed ID: 14977326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulus-specific oscillations in a retinal model.
    Kenyon GT; Travis BJ; Theiler J; George JS; Stephens GJ; Marshak DW
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1083-91. PubMed ID: 15484885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap junctions with amacrine cells provide a feedback pathway for ganglion cells within the retina.
    Kenyon GT; Marshak DW
    Proc Biol Sci; 1998 May; 265(1399):919-25. PubMed ID: 9633113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional properties of homologous electrical synapses between retinal amacrine cells.
    Hidaka S; Kato T; Hashimoto Y
    J Integr Neurosci; 2005 Sep; 4(3):313-40. PubMed ID: 16178061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina.
    Murphy-Baum BL; Taylor WR
    J Neurosci; 2015 Sep; 35(39):13336-50. PubMed ID: 26424882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of spike blockade on the receptive-field size of amacrine and ganglion cells in the rabbit retina.
    Bloomfield SA
    J Neurophysiol; 1996 May; 75(5):1878-93. PubMed ID: 8734587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. See globally, spike locally: oscillations in a retinal model encode large visual features.
    Stephens GJ; Neuenschwander S; George JS; Singer W; Kenyon GT
    Biol Cybern; 2006 Oct; 95(4):327-48. PubMed ID: 16897092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high frequency resonance in the responses of retinal ganglion cells to rapidly modulated stimuli: a computer model.
    Miller JA; Denning KS; George JS; Marshak DW; Kenyon GT
    Vis Neurosci; 2006; 23(5):779-94. PubMed ID: 17020633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional circuitry for peripheral suppression in Mammalian Y-type retinal ganglion cells.
    Zaghloul KA; Manookin MB; Borghuis BG; Boahen K; Demb JB
    J Neurophysiol; 2007 Jun; 97(6):4327-40. PubMed ID: 17460102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular basis for contrast gain control over the receptive field center of mammalian retinal ganglion cells.
    Beaudoin DL; Borghuis BG; Demb JB
    J Neurosci; 2007 Mar; 27(10):2636-45. PubMed ID: 17344401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of receptive-field and tracer-coupling size of amacrine and ganglion cells in the rabbit retina.
    Bloomfield SA; Xin D
    Vis Neurosci; 1997; 14(6):1153-65. PubMed ID: 9447695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiology of the A1 amacrine: a spiking, axon-bearing interneuron of the macaque monkey retina.
    Stafford DK; Dacey DM
    Vis Neurosci; 1997; 14(3):507-22. PubMed ID: 9194317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergence of visual channels in the inner retina.
    Asari H; Meister M
    Nat Neurosci; 2012 Nov; 15(11):1581-9. PubMed ID: 23086336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear spatial integration in the receptive field surround of retinal ganglion cells.
    Takeshita D; Gollisch T
    J Neurosci; 2014 May; 34(22):7548-61. PubMed ID: 24872559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposing motion inhibits responses of direction-selective ganglion cells in the fish retina.
    Damjanović I; Maximova E; Aliper A; Maximov P; Maximov V
    J Integr Neurosci; 2015 Mar; 14(1):53-72. PubMed ID: 25608593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells.
    Mastronarde DN
    J Neurophysiol; 1983 Feb; 49(2):303-24. PubMed ID: 6300340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spatial structure of a nonlinear receptive field.
    Schwartz GW; Okawa H; Dunn FA; Morgan JL; Kerschensteiner D; Wong RO; Rieke F
    Nat Neurosci; 2012 Nov; 15(11):1572-80. PubMed ID: 23001060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of stimulus-dependent synchrony in retinal ganglion cells.
    Chatterjee S; Merwine DK; Amthor FR; Grzywacz NM
    Vis Neurosci; 2007; 24(6):827-43. PubMed ID: 18093370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric temporal properties in the receptive field of retinal transient amacrine cells.
    Djupsund K; Furukawa T; Yasui S; Yamada M
    J Gen Physiol; 2003 Oct; 122(4):445-58. PubMed ID: 14517270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptive-field properties of displaced starburst amacrine cells change following axotomy-induced degeneration of ganglion cells.
    Jensen RJ
    Vis Neurosci; 1995; 12(1):177-84. PubMed ID: 7718498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.