These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 14977413)

  • 1. Regulation of renal K transport by dietary K intake.
    Wang W
    Annu Rev Physiol; 2004; 66():547-69. PubMed ID: 14977413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The protein tyrosine kinase-dependent pathway mediates the effect of K intake on renal K secretion.
    Lin DH; Sterling H; Wang WH
    Physiology (Bethesda); 2005 Apr; 20():140-6. PubMed ID: 15772303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of ROMK channels by protein tyrosine kinase and tyrosine phosphatase.
    Wang WH; Lin DH; Sterling H
    Trends Cardiovasc Med; 2002 Apr; 12(3):138-42. PubMed ID: 12007740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dietary potassium restriction stimulates endocytosis of ROMK channel in rat cortical collecting duct.
    Chu PY; Quigley R; Babich V; Huang CL
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1179-87. PubMed ID: 12952855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of potassium (K) handling in the renal collecting duct.
    Wang WH; Giebisch G
    Pflugers Arch; 2009 May; 458(1):157-68. PubMed ID: 18839206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional profile of the isolated uremic nephron: potassium adaptation in the rabbit cortical collecting tubule.
    Fine LG; Yanagawa N; Schultze RG; Tuck M; Trizna W
    J Clin Invest; 1979 Oct; 64(4):1033-43. PubMed ID: 225350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New aspects of renal potassium transport.
    Giebisch G; Hebert SC; Wang WH
    Pflugers Arch; 2003 Jun; 446(3):289-97. PubMed ID: 12684792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitor of growth 4 (ING4) is up-regulated by a low K intake and suppresses renal outer medullary K channels (ROMK) by MAPK stimulation.
    Zhang X; Lin DH; Jin Y; Wang KS; Zhang Y; Babilonia E; Wang Z; Wang Z; Giebisch G; Han ZG; Wang WH
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9517-22. PubMed ID: 17517644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium transport by successive segments of the mammalian nephron.
    Wright FS
    Fed Proc; 1981 Jul; 40(9):2398-402. PubMed ID: 6265288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of renal potassium secretion: molecular mechanisms.
    Welling PA
    Semin Nephrol; 2013 May; 33(3):215-28. PubMed ID: 23953799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apical potassium channels in the rat connecting tubule.
    Frindt G; Palmer LG
    Am J Physiol Renal Physiol; 2004 Nov; 287(5):F1030-7. PubMed ID: 15280155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH.
    Fakler B; Schultz JH; Yang J; Schulte U; Brandle U; Zenner HP; Jan LY; Ruppersberg JP
    EMBO J; 1996 Aug; 15(16):4093-9. PubMed ID: 8861938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiotensin II: a candidate for an aldosterone-independent mediator of potassium preservation during volume depletion.
    Hoover RS
    Kidney Int; 2011 Feb; 79(4):377-9. PubMed ID: 21278776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal potassium transport: morphological and functional adaptations.
    Stanton BA
    Am J Physiol; 1989 Nov; 257(5 Pt 2):R989-97. PubMed ID: 2686470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. K depletion increases protein tyrosine kinase-mediated phosphorylation of ROMK.
    Lin DH; Sterling H; Lerea KM; Welling P; Jin L; Giebisch G; Wang WH
    Am J Physiol Renal Physiol; 2002 Oct; 283(4):F671-7. PubMed ID: 12217858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Molecular and functional diversity of NA,K-ATPase and renal H,K-ATPases].
    Jaisser F
    Nephrologie; 1996; 17(7):401-8. PubMed ID: 9019667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some reflections on the mechanism of renal tubular potassium transport.
    Giebisch G
    Yale J Biol Med; 1975 Sep; 48(4):315-36. PubMed ID: 1202761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium and potassium handling by the aldosterone-sensitive distal nephron: the pivotal role of the distal and connecting tubule.
    Meneton P; Loffing J; Warnock DG
    Am J Physiol Renal Physiol; 2004 Oct; 287(4):F593-601. PubMed ID: 15345493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mathematical model of potassium homeostasis: Effect of feedforward and feedback controls.
    Stadt MM; Leete J; Devinyak S; Layton AT
    PLoS Comput Biol; 2022 Dec; 18(12):e1010607. PubMed ID: 36538563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter SNAT3 (Slc38a3) in mouse kidney.
    Busque SM; Wagner CA
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F440-50. PubMed ID: 19458124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.