These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 14977617)

  • 41. Response Timing Accuracy as a Function of Movement Velocity and Distance.
    Jasiewicz J; Simmons RW
    J Mot Behav; 1996 Sep; 28(3):224-232. PubMed ID: 12529205
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The dynamics of goal-directed rhythmical aiming.
    Mottet D; Bootsma RJ
    Biol Cybern; 1999 Apr; 80(4):235-45. PubMed ID: 10326240
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The sine wave protocol: decrease movement time without increasing errors.
    Boyle JB; Kennedy DM; Wang C; Shea CH
    J Mot Behav; 2014; 46(4):277-85. PubMed ID: 24787616
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cinematographical Analysis of Movement Pathway Constraints in Rapid Target-Striking Tasks.
    Short MW; Fischman MG; Wang YT
    J Mot Behav; 1996 Jun; 28(2):157-163. PubMed ID: 12529217
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Computational Model of the Simplest Motor Program.
    Gottlieb GL
    J Mot Behav; 1993 Sep; 25(3):153-161. PubMed ID: 12581986
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Movement planning and online control in multiple sclerosis: assessment using a Fitts law reciprocal aiming task.
    Ternes AM; Fielding J; Corben LA; White OB; Bradshaw JL; Hocking DR; Georgiou-Karistianis N
    Cogn Behav Neurol; 2014 Sep; 27(3):139-47. PubMed ID: 25237744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Perceived Cost and Intrinsic Motor Variability Modulate the Speed-Accuracy Trade-Off.
    Bertucco M; Bhanpuri NH; Sanger TD
    PLoS One; 2015; 10(10):e0139988. PubMed ID: 26447874
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Variability effects on the internal structure of rapid aiming movements.
    Worringham CJ
    J Mot Behav; 1991 Mar; 23(1):75-85. PubMed ID: 14766533
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The modulatory influence of end-point controllability on decisions between actions.
    Cos I; Medleg F; Cisek P
    J Neurophysiol; 2012 Sep; 108(6):1764-80. PubMed ID: 22773776
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Task difficulty and inertial properties of hand-held tools: An assessment of their concurrent effects on precision aiming.
    Silva PL; Bootsma RJ; Figueiredo PR; Avelar BS; de Andrade AG; Fonseca ST; Mancini MC
    Hum Mov Sci; 2016 Aug; 48():161-70. PubMed ID: 27219738
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Resolving power of the perceptual- and sensorimotor systems in 6- to 10-year-old children.
    Hay L; Fleury M; Bard C; Teasdale N
    J Mot Behav; 1994 Mar; 26(1):36-42. PubMed ID: 15757832
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Learning to optimize speed, accuracy, and energy expenditure: a framework for understanding speed-accuracy relations in goal-directed aiming.
    Elliott D; Hansen S; Mendoza J; Tremblay L
    J Mot Behav; 2004 Sep; 36(3):339-51. PubMed ID: 15262629
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimizing the control of high-ID movements: rethinking the power of the visual display.
    Boyle JB; Panzer S; Wang C; Kennedy D; Shea CH
    Exp Brain Res; 2013 Dec; 231(4):479-93. PubMed ID: 24091772
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinematic adaptation to sudden changes in visual task constraints during reciprocal aiming.
    Fernandez L; Warren WH; Bootsma RJ
    Hum Mov Sci; 2006 Dec; 25(6):695-717. PubMed ID: 16859793
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The interaction of response complexity and instructional set.
    Sidaway B
    J Mot Behav; 1994 Mar; 26(1):13-7. PubMed ID: 15757829
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Non-linear Amplification of Variability Through Interaction Across Scales Supports Greater Accuracy in Manual Aiming: Evidence From a Multifractal Analysis With Comparisons to Linear Surrogates in the Fitts Task.
    Bell CA; Carver NS; Zbaracki JA; Kelty-Stephen DG
    Front Physiol; 2019; 10():998. PubMed ID: 31447691
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The utilization of visual information in the control of reciprocal aiming movements.
    Cullen JD; Helsen WF; Buekers MJ; Hesketh KL; Starkes JL; Elliott D
    Hum Mov Sci; 2001 Dec; 20(6):807-28. PubMed ID: 11792441
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatial and temporal characteristics of rapid cursor-positioning movements with electromechanical mice in human-computer interaction.
    Walker N; Meyer DE; Smelcer JB
    Hum Factors; 1993 Sep; 35(3):431-58. PubMed ID: 8244410
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of amplitude and accuracy requirements on movement time in children.
    Hay L
    J Mot Behav; 1981 Sep; 13(3):177-86. PubMed ID: 15213015
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The trade-off between spatial and temporal variabilities in reciprocal upper-limb aiming movements of different durations.
    Danion F; Bongers RM; Bootsma RJ
    PLoS One; 2014; 9(5):e97447. PubMed ID: 24835236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.