These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 14977936)

  • 1. Identification of novel virulence-associated genes via genome analysis of hypothetical genes.
    Garbom S; Forsberg A; Wolf-Watz H; Kihlberg BM
    Infect Immun; 2004 Mar; 72(3):1333-40. PubMed ID: 14977936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Mutagenesis in Borrelia burgdorferi.
    Lin T; Gao L
    Methods Mol Biol; 2018; 1690():201-223. PubMed ID: 29032547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution and virulence contributions of the autotransporter proteins YapJ and YapK of Yersinia pestis CO92 and their homologs in Y. pseudotuberculosis IP32953.
    Lenz JD; Temple BR; Miller VL
    Infect Immun; 2012 Oct; 80(10):3693-705. PubMed ID: 22802344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A putative DNA adenine methyltransferase is involved in Yersinia pseudotuberculosis pathogenicity.
    Pouillot F; Fayolle C; Carniel E
    Microbiology (Reading); 2007 Aug; 153(Pt 8):2426-2434. PubMed ID: 17660407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of chromosomal regions conserved in Yersinia pseudotuberculosis and lost by Yersinia pestis.
    Pouillot F; Fayolle C; Carniel E
    Infect Immun; 2008 Oct; 76(10):4592-9. PubMed ID: 18678673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis.
    Bozue J; Mou S; Moody KL; Cote CK; Trevino S; Fritz D; Worsham P
    Microb Pathog; 2011 Jun; 50(6):314-21. PubMed ID: 21320584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steps toward broad-spectrum therapeutics: discovering virulence-associated genes present in diverse human pathogens.
    Stubben CJ; Duffield ML; Cooper IA; Ford DC; Gans JD; Karlyshev AV; Lingard B; Oyston PC; de Rochefort A; Song J; Wren BW; Titball RW; Wolinsky M
    BMC Genomics; 2009 Oct; 10():501. PubMed ID: 19874620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Strategies for bacterial virulence genes identification].
    Foulongne V; Michaux-Charachon S; Jumas-Bilak E; O'Callaghan D; Ramuz M
    Pathol Biol (Paris); 2004 Mar; 52(2):104-14. PubMed ID: 15065563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatics annotation of the hypothetical proteins found by omics techniques can help to disclose additional virulence factors.
    Hernández S; Gómez A; Cedano J; Querol E
    Curr Microbiol; 2009 Oct; 59(4):451-6. PubMed ID: 19636617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Scale Analysis Reveals IscR Directly and Indirectly Regulates Virulence Factor Genes in Pathogenic
    Balderas D; Mettert E; Lam HN; Banerjee R; Gverzdys T; Alvarez P; Saarunya G; Tanner N; Zoubedi A; Wei Y; Kiley PJ; Auerbuch V
    mBio; 2021 Jun; 12(3):e0063321. PubMed ID: 34060331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of New Virulence Factors and Vaccine Candidates for
    Andersson JA; Sha J; Erova TE; Fitts EC; Ponnusamy D; Kozlova EV; Kirtley ML; Chopra AK
    Front Cell Infect Microbiol; 2017; 7():448. PubMed ID: 29090192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial targets and antibiotics: genome-based drug discovery.
    Gray CP; Keck W
    Cell Mol Life Sci; 1999 Nov; 56(9-10):779-87. PubMed ID: 11212338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel genetic tools for diaminopimelic acid selection in virulence studies of Yersinia pestis.
    Bland DM; Eisele NA; Keleher LL; Anderson PE; Anderson DM
    PLoS One; 2011 Mar; 6(3):e17352. PubMed ID: 21399698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-virulence Strategies to Target Bacterial Infections.
    Mühlen S; Dersch P
    Curr Top Microbiol Immunol; 2016; 398():147-183. PubMed ID: 26942418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of high-density array-based signature-tagged mutagenesis to discover novel Yersinia virulence-associated genes.
    Karlyshev AV; Oyston PC; Williams K; Clark GC; Titball RW; Winzeler EA; Wren BW
    Infect Immun; 2001 Dec; 69(12):7810-9. PubMed ID: 11705963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecology and Evolution of Chromosomal Gene Transfer between Environmental Microorganisms and Pathogens.
    Martínez JL
    Microbiol Spectr; 2018 Jan; 6(1):. PubMed ID: 29350130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of novel pathogenicity genes by PCR signature-tagged mutagenesis and related technologies.
    Lehoux DE; Sanschagrin F; Kukavica-Ibrulj I; Potvin E; Levesque RC
    Methods Mol Biol; 2004; 266():289-304. PubMed ID: 15148424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovering essential and infection-related genes.
    Lehoux DE; Sanschagrin F; Levesque RC
    Curr Opin Microbiol; 2001 Oct; 4(5):515-9. PubMed ID: 11587926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial genome engineering and synthetic biology: combating pathogens.
    Krishnamurthy M; Moore RT; Rajamani S; Panchal RG
    BMC Microbiol; 2016 Nov; 16(1):258. PubMed ID: 27814687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of essential genes in Streptococcus pneumoniae using bioinformatics and allelic replacement mutagenesis.
    Song JH; Ko KS
    Methods Mol Biol; 2008; 416():401-8. PubMed ID: 18392984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.