These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 14978298)

  • 1. Nucleotide-induced switch in oligomerization of the AAA+ ATPase ClpB.
    Akoev V; Gogol EP; Barnett ME; Zolkiewski M
    Protein Sci; 2004 Mar; 13(3):567-74. PubMed ID: 14978298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide-dependent oligomerization of ClpB from Escherichia coli.
    Zolkiewski M; Kessel M; Ginsburg A; Maurizi MR
    Protein Sci; 1999 Sep; 8(9):1899-903. PubMed ID: 10493591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sedimentation Equilibrium Analysis of ClpB Self-Association in Diluted and Crowded Solutions.
    Alfonso C; del Castillo U; Martín I; Muga A; Rivas G
    Methods Enzymol; 2015; 562():135-60. PubMed ID: 26412650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heptameric ring structure of the heat-shock protein ClpB, a protein-activated ATPase in Escherichia coli.
    Kim KI; Cheong GW; Park SC; Ha JS; Woo KM; Choi SJ; Chung CH
    J Mol Biol; 2000 Nov; 303(5):655-66. PubMed ID: 11061966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions within the ClpB/DnaK bi-chaperone system from Escherichia coli.
    Kedzierska S; Chesnokova LS; Witt SN; Zolkiewski M
    Arch Biochem Biophys; 2005 Dec; 444(1):61-5. PubMed ID: 16289019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide binding and allosteric modulation of the second AAA+ domain of ClpB probed by transient kinetic studies.
    Werbeck ND; Kellner JN; Barends TR; Reinstein J
    Biochemistry; 2009 Aug; 48(30):7240-50. PubMed ID: 19594134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examination of the dynamic assembly equilibrium for E. coli ClpB.
    Lin J; Lucius AL
    Proteins; 2015 Nov; 83(11):2008-24. PubMed ID: 26313457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of ClpB Quaternary Structure and Linkage to Nucleotide Binding.
    Lin J; Lucius AL
    Biochemistry; 2016 Mar; 55(12):1758-71. PubMed ID: 26891079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity.
    Mogk A; Schlieker C; Strub C; Rist W; Weibezahn J; Bukau B
    J Biol Chem; 2003 May; 278(20):17615-24. PubMed ID: 12624113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB.
    Lee S; Choi JM; Tsai FT
    Mol Cell; 2007 Jan; 25(2):261-71. PubMed ID: 17244533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Walker-A threonine couples nucleotide occupancy with the chaperone activity of the AAA+ ATPase ClpB.
    Nagy M; Wu HC; Liu Z; Kedzierska-Mieszkowska S; Zolkiewski M
    Protein Sci; 2009 Feb; 18(2):287-93. PubMed ID: 19177562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domain stability in the AAA+ ATPase ClpB from Escherichia coli.
    Nagy M; Akoev V; Zolkiewski M
    Arch Biochem Biophys; 2006 Sep; 453(1):63-9. PubMed ID: 16615934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity.
    Li J; Sha B
    J Mol Biol; 2002 May; 318(4):1127-37. PubMed ID: 12054807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative analysis of the effect of nucleotides and the M domain on the association equilibrium of ClpB.
    del Castillo U; Alfonso C; Acebrón SP; Martos A; Moro F; Rivas G; Muga A
    Biochemistry; 2011 Mar; 50(12):1991-2003. PubMed ID: 21309513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide utilization requirements that render ClpB active as a chaperone.
    del Castillo U; Fernández-Higuero JA; Pérez-Acebrón S; Moro F; Muga A
    FEBS Lett; 2010 Mar; 584(5):929-34. PubMed ID: 20085762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement.
    Yamasaki T; Oohata Y; Nakamura T; Watanabe YH
    J Biol Chem; 2015 Apr; 290(15):9789-800. PubMed ID: 25713084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system.
    Doyle SM; Hoskins JR; Wickner S
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11138-44. PubMed ID: 17545305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites.
    Schlee S; Groemping Y; Herde P; Seidel R; Reinstein J
    J Mol Biol; 2001 Mar; 306(4):889-99. PubMed ID: 11243796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. trans-Acting arginine residues in the AAA+ chaperone ClpB allosterically regulate the activity through inter- and intradomain communication.
    Zeymer C; Fischer S; Reinstein J
    J Biol Chem; 2014 Nov; 289(47):32965-76. PubMed ID: 25253689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling and dynamics of subunits in the hexameric AAA+ chaperone ClpB.
    Werbeck ND; Schlee S; Reinstein J
    J Mol Biol; 2008 Apr; 378(1):178-90. PubMed ID: 18343405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.