BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 14978299)

  • 1. The role of phosphagen specificity loops in arginine kinase.
    Azzi A; Clark SA; Ellington WR; Chapman MS
    Protein Sci; 2004 Mar; 13(3):575-85. PubMed ID: 14978299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induced fit in guanidino kinases--comparison of substrate-free and transition state analog structures of arginine kinase.
    Yousef MS; Clark SA; Pruett PK; Somasundaram T; Ellington WR; Chapman MS
    Protein Sci; 2003 Jan; 12(1):103-11. PubMed ID: 12493833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isoleucine 69 and valine 325 form a specificity pocket in human muscle creatine kinase.
    Novak WR; Wang PF; McLeish MJ; Kenyon GL; Babbitt PC
    Biochemistry; 2004 Nov; 43(43):13766-74. PubMed ID: 15504039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of arginine kinase in complex with ADP, nitrate, and various phosphagen analogs.
    Clark SA; Davulcu O; Chapman MS
    Biochem Biophys Res Commun; 2012 Oct; 427(1):212-7. PubMed ID: 22995310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induced fit in arginine kinase.
    Zhou G; Ellington WR; Chapman MS
    Biophys J; 2000 Mar; 78(3):1541-50. PubMed ID: 10692338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase.
    Suzuki T; Kamidochi M; Inoue N; Kawamichi H; Yazawa Y; Furukohri T; Ellington WR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):671-5. PubMed ID: 10359650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of amino acid residues on the GS region of Stichopus arginine kinase and Danio creatine kinase.
    Uda K; Suzuki T
    Protein J; 2004 Jan; 23(1):53-64. PubMed ID: 15115182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The putative catalytic bases have, at most, an accessory role in the mechanism of arginine kinase.
    Pruett PS; Azzi A; Clark SA; Yousef MS; Gattis JL; Somasundaram T; Ellington WR; Chapman MS
    J Biol Chem; 2003 Jul; 278(29):26952-7. PubMed ID: 12732621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 2.1 A structure of Torpedo californica creatine kinase complexed with the ADP-Mg(2+)-NO(3)(-)-creatine transition-state analogue complex.
    Lahiri SD; Wang PF; Babbitt PC; McLeish MJ; Kenyon GL; Allen KN
    Biochemistry; 2002 Nov; 41(47):13861-7. PubMed ID: 12437342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
    Tanaka K; Suzuki T
    FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loop movement and catalysis in creatine kinase.
    Wang PF; Flynn AJ; McLeish MJ; Kenyon GL
    IUBMB Life; 2005; 57(4-5):355-62. PubMed ID: 16036620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity.
    Wu X; Ye S; Guo S; Yan W; Bartlam M; Rao Z
    FASEB J; 2010 Jan; 24(1):242-52. PubMed ID: 19783784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stichopus japonicus arginine kinase: gene structure and unique substrate recognition system.
    Suzuki T; Yamamoto Y; Umekawa M
    Biochem J; 2000 Nov; 351 Pt 3(Pt 3):579-85. PubMed ID: 11042111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creatine kinase: a role for arginine-95 in creatine binding and active site organization.
    Edmiston PL; Schavolt KL; Kersteen EA; Moore NR; Borders CL
    Biochim Biophys Acta; 2001 Apr; 1546(2):291-8. PubMed ID: 11295435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine kinase: joint crystallographic and NMR RDC analyses link substrate-associated motions to intrinsic flexibility.
    Niu X; Bruschweiler-Li L; Davulcu O; Skalicky JJ; Brüschweiler R; Chapman MS
    J Mol Biol; 2011 Jan; 405(2):479-96. PubMed ID: 21075117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition state stabilization by six arginines clustered in the active site of creatine kinase.
    Jourden MJ; Geiss PR; Thomenius MJ; Horst LA; Barty MM; Brym MJ; Mulligan GB; Almeida RM; Kersteen BA; Myers NR; Snider MJ; Borders CL; Edmiston PL
    Biochim Biophys Acta; 2005 Aug; 1751(2):178-83. PubMed ID: 16005271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asparagine 285 plays a key role in transition state stabilization in rabbit muscle creatine kinase.
    Borders CL; MacGregor KM; Edmiston PL; Gbeddy ER; Thomenius MJ; Mulligan GB; Snider MJ
    Protein Sci; 2003 Mar; 12(3):532-7. PubMed ID: 12592023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunological and physical comparison of monomeric and dimeric phosphagen kinases: Some evolutionary implications.
    Wright-Weber B; Held BC; Brown A; Grossman SH
    Biochim Biophys Acta; 2006 Mar; 1760(3):364-71. PubMed ID: 16386374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of horseshoe crab arginine kinase in Escherichia coli and site-directed mutations of the reactive cysteine peptide.
    Strong SJ; Ellington WR
    Comp Biochem Physiol B Biochem Mol Biol; 1996 Apr; 113(4):809-16. PubMed ID: 8925449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.