BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 14978706)

  • 21. Prediction of signal peptides in protein sequences by neural networks.
    Plewczynski D; Slabinski L; Ginalski K; Rychlewski L
    Acta Biochim Pol; 2008; 55(2):261-7. PubMed ID: 18506221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Online tools for predicting integral membrane proteins.
    Bigelow H; Rost B
    Methods Mol Biol; 2009; 528():3-23. PubMed ID: 19153681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Signal-3L: A 3-layer approach for predicting signal peptides.
    Shen HB; Chou KC
    Biochem Biophys Res Commun; 2007 Nov; 363(2):297-303. PubMed ID: 17880924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein backbone angle prediction with machine learning approaches.
    Kuang R; Leslie CS; Yang AS
    Bioinformatics; 2004 Jul; 20(10):1612-21. PubMed ID: 14988121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. JVirGel 2.0: computational prediction of proteomes separated via two-dimensional gel electrophoresis under consideration of membrane and secreted proteins.
    Hiller K; Grote A; Maneck M; Münch R; Jahn D
    Bioinformatics; 2006 Oct; 22(19):2441-3. PubMed ID: 16870933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H; Raghava GP
    Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP; Han JH
    BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier.
    Sapay N; Guermeur Y; Deléage G
    BMC Bioinformatics; 2006 May; 7():255. PubMed ID: 16704727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of the burial status of transmembrane residues of helical membrane proteins.
    Park Y; Hayat S; Helms V
    BMC Bioinformatics; 2007 Aug; 8():302. PubMed ID: 17708758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HSEpred: predict half-sphere exposure from protein sequences.
    Song J; Tan H; Takemoto K; Akutsu T
    Bioinformatics; 2008 Jul; 24(13):1489-97. PubMed ID: 18467349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence context and modified hydrophobic moment plots help identify 'horizontal' surface helices in transmembrane protein structure prediction.
    Orgel JP
    J Struct Biol; 2004 Oct; 148(1):51-65. PubMed ID: 15363787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of protein transmembrane helical regions by a neural network.
    Dombi GW; Lawrence J
    Protein Sci; 1994 Apr; 3(4):557-66. PubMed ID: 8003974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of the human membrane proteome.
    Fagerberg L; Jonasson K; von Heijne G; Uhlén M; Berglund L
    Proteomics; 2010 Mar; 10(6):1141-9. PubMed ID: 20175080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of subcellular localization using sequence-biased recurrent networks.
    Bodén M; Hawkins J
    Bioinformatics; 2005 May; 21(10):2279-86. PubMed ID: 15746276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo-amino acid composition to predict membrane protein types.
    Shen H; Chou KC
    Biochem Biophys Res Commun; 2005 Aug; 334(1):288-92. PubMed ID: 16002049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CoPreTHi: a Web tool which combines transmembrane protein segment prediction methods.
    Promponas VJ; Palaios GA; Pasquier CM; Hamodrakas JS; Hamodrakas SJ
    In Silico Biol; 1999; 1(3):159-62. PubMed ID: 11471236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of turn types in protein structure by machine-learning classifiers.
    Meissner M; Koch O; Klebe G; Schneider G
    Proteins; 2009 Feb; 74(2):344-52. PubMed ID: 18618702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TMRPres2D: high quality visual representation of transmembrane protein models.
    Spyropoulos IC; Liakopoulos TD; Bagos PG; Hamodrakas SJ
    Bioinformatics; 2004 Nov; 20(17):3258-60. PubMed ID: 15201184
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrophobicity and prediction of the secondary structure of membrane proteins and peptides.
    Klevanik AV
    Membr Cell Biol; 2001 Jul; 14(5):673-97. PubMed ID: 11699870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HYPROSP II--a knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence.
    Lin HN; Chang JM; Wu KP; Sung TY; Hsu WL
    Bioinformatics; 2005 Aug; 21(15):3227-33. PubMed ID: 15932901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.