BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 14978713)

  • 1. Study of proton adsorption at heterogeneous oxide/electrolyte interface. Prediction of the surface potential using Monte Carlo simulations and 1-pK approach.
    Zarzycki P; Charmas R; Szabelski P
    J Comput Chem; 2004 Apr; 25(5):704-11. PubMed ID: 14978713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Monte Carlo study of proton adsorption at the heterogeneous oxide/electrolyte interface.
    Szabelski P; Zarzycki P; Charmas R
    Langmuir; 2004 Feb; 20(3):997-1002. PubMed ID: 15773136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the surface heterogeneity in adsorption of hydrogen ions on metal oxides: theory and simulations.
    Zarzycki P; Szabelski P; Charmas R
    J Comput Chem; 2005 Jul; 26(10):1079-88. PubMed ID: 15898108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo modeling of ion adsorption at the energetically heterogeneous metal oxide/electrolyte interface: Micro- and macroscopic correlations between adsorption energies.
    Zarzycki P
    J Colloid Interface Sci; 2007 Feb; 306(2):328-36. PubMed ID: 17125782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo study of the topographic effects on the proton binding at the energetically heterogeneous metal oxide/electrolyte interface.
    Zarzycki P
    Langmuir; 2006 Dec; 22(26):11234-40. PubMed ID: 17154609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to distinguish energetic surface heterogeneity from electrostatic interactions in the case of hydrogen ion adsorption from solution onto oxides.
    Piasecki W
    Langmuir; 2006 Aug; 22(16):6761-3. PubMed ID: 16863219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of binary adsorption on heterogeneous surfaces characterized by a quasi-gaussian adsorption energy distribution.
    Nieszporek K; Szabelski P; Drach M
    Langmuir; 2005 Aug; 21(16):7335-41. PubMed ID: 16042463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the parameters for the 1-pK triple-layer model of ion adsorption onto oxides from known parameter values for the 2-pK TLM.
    Piasecki W
    J Colloid Interface Sci; 2006 Oct; 302(2):389-95. PubMed ID: 16904684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Irreversible adsorption of particles on heterogeneous surfaces.
    Adamczyk Z; Jaszczółt K; Michna A; Siwek B; Szyk-Warszyńska L; Zembala M
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):25-42. PubMed ID: 15961056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear response of the surface electrostatic potential formed at metal oxide/electrolyte interfaces. A Monte Carlo simulation study.
    Zarzycki P; Rosso KM
    J Colloid Interface Sci; 2010 Jan; 341(1):143-52. PubMed ID: 19836754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic Monte Carlo study of proton binding at the metal oxide/electrolyte interface.
    Zarzycki P
    J Colloid Interface Sci; 2007 Nov; 315(1):54-62. PubMed ID: 17719059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective adsorption energy distribution function as a new mean-field characteristic of surface heterogeneity in adsorption systems with lateral interactions.
    Zarzycki P
    J Colloid Interface Sci; 2007 Jul; 311(2):622-7. PubMed ID: 17449056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of the electrical differential capacitance of a double electrical layer formed at the heterogeneous metal oxide/electrolyte interface.
    Zarzycki P
    J Colloid Interface Sci; 2006 May; 297(1):204-14. PubMed ID: 16325839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of metal ions adsorption at heterogeneous solid/solution interfaces: A theoretical treatment based on statistical rate theory.
    Rudzinski W; Plazinski W
    J Colloid Interface Sci; 2008 Nov; 327(1):36-43. PubMed ID: 18760418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulations of antibody adsorption and orientation on charged surfaces.
    Zhou J; Tsao HK; Sheng YJ; Jiang S
    J Chem Phys; 2004 Jul; 121(2):1050-7. PubMed ID: 15260639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton-arsenic adsorption ratios and zeta potential measurements: implications for protonation of hydroxyls on the goethite surface.
    Zhang JS; Stanforth R; Pehkonen SO
    J Colloid Interface Sci; 2007 Nov; 315(1):13-20. PubMed ID: 17662994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulations of Lennard-Jones nonionic surfactant adsorption at the liquid/vapor interface.
    Howes AJ; Radke CJ
    Langmuir; 2007 Feb; 23(4):1835-44. PubMed ID: 17279664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Termination and water adsorption at the alpha-Al2O3 (012)-aqueous solution interface.
    Catalano JG; Park C; Zhang Z; Fenter P
    Langmuir; 2006 May; 22(10):4668-73. PubMed ID: 16649780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo versus molecular dynamics simulations in heterogeneous systems: an application to the n-pentane liquid-vapor interface.
    Goujon F; Malfreyt P; Simon JM; Boutin A; Rousseau B; Fuchs AH
    J Chem Phys; 2004 Dec; 121(24):12559-71. PubMed ID: 15606277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton pathways in a [NiFe]-hydrogenase: A theoretical study.
    Teixeira VH; Soares CM; Baptista AM
    Proteins; 2008 Feb; 70(3):1010-22. PubMed ID: 17847093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.