BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 14979034)

  • 1. Isolation and assay of the RSC chromatin-remodeling complex from Saccharomyces cerevisiae.
    Lorch Y; Kornberg RD
    Methods Enzymol; 2004; 377():316-22. PubMed ID: 14979034
    [No Abstract]   [Full Text] [Related]  

  • 2. DNA translocation and nucleosome remodeling assays by the RSC chromatin remodeling complex.
    Wittmeyer J; Saha A; Cairns B
    Methods Enzymol; 2004; 377():322-43. PubMed ID: 14979035
    [No Abstract]   [Full Text] [Related]  

  • 3. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nucleosome sliding assay for chromatin remodeling factors.
    Eberharter A; Längst G; Becker PB
    Methods Enzymol; 2004; 377():344-53. PubMed ID: 14979036
    [No Abstract]   [Full Text] [Related]  

  • 5. Swi/SNF-GCN5-dependent chromatin remodelling determines induced expression of GDH3, one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces cerevisiae.
    Avendaño A; Riego L; DeLuna A; Aranda C; Romero G; Ishida C; Vázquez-Acevedo M; Rodarte B; Recillas-Targa F; Valenzuela L; Zonszein S; González A
    Mol Microbiol; 2005 Jul; 57(1):291-305. PubMed ID: 15948967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Architecture of the chromatin remodeler RSC and insights into its nucleosome engagement.
    Patel AB; Moore CM; Greber BJ; Luo J; Zukin SA; Ranish J; Nogales E
    Elife; 2019 Dec; 8():. PubMed ID: 31886770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex.
    Bell SP; Stillman B
    Nature; 1992 May; 357(6374):128-34. PubMed ID: 1579162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analyses of chromatin modifications in yeast.
    Jacobson SJ; Laurenson PM; Pillus L
    Methods Enzymol; 2004; 377():3-55. PubMed ID: 14979016
    [No Abstract]   [Full Text] [Related]  

  • 9. Common chromatin architecture, common chromatin remodeling, and common transcription kinetics of Adr1-dependent genes in Saccharomyces cerevisiae.
    Agricola E; Verdone L; Xella B; Di Mauro E; Caserta M
    Biochemistry; 2004 Jul; 43(27):8878-84. PubMed ID: 15236596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hap1p photofootprinting as an in vivo assay of repression mechanism in Saccharomyces cerevisiae.
    Shimizu M; Mitchell AP
    Methods Enzymol; 2003; 370():479-87. PubMed ID: 14712669
    [No Abstract]   [Full Text] [Related]  

  • 11. A PCR-TGGE (Temperature Gradient Gel Electrophoresis) technique to assess differentiation among enological Saccharomyces cerevisiae strains.
    Manzano M; Cocolin L; Iacumin L; Cantoni C; Comi G
    Int J Food Microbiol; 2005 Jun; 101(3):333-9. PubMed ID: 15925714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron microscopic analysis of the RSC chromatin remodeling complex.
    Asturias FJ; Ezeokonkwo C; Kornberg RD; Lorch Y
    Methods Enzymol; 2004; 376():48-62. PubMed ID: 14975298
    [No Abstract]   [Full Text] [Related]  

  • 13. Using chromatin immunoprecipitation to map cotranscriptional mRNA processing in Saccharomyces cerevisiae.
    Keogh MC; Buratowski S
    Methods Mol Biol; 2004; 257():1-16. PubMed ID: 14769992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA protein interactions at the rRNA of Saccharomyces cerevisiae.
    Cioci F; Di Felice F; Chiani F; Camilloni G
    Ital J Biochem; 2007 Jun; 56(2):81-90. PubMed ID: 17722648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters.
    Jessen WJ; Hoose SA; Kilgore JA; Kladde MP
    Nat Struct Mol Biol; 2006 Mar; 13(3):256-63. PubMed ID: 16491089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The absence of the Isw2p-Itc1p chromatin-remodelling complex induces mating type-specific and Flo11p-independent invasive growth of Saccharomyces cerevisiae.
    Trachtulcová P; Frýdlová I; Janatová I; Hasek J
    Yeast; 2004 Apr; 21(5):389-401. PubMed ID: 15116340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The essential function of Swc4p - a protein shared by two chromatin-modifying complexes of the yeast Saccharomyces cerevisiae - resides within its N-terminal part.
    Miciałkiewicz A; Chełstowska A
    Acta Biochim Pol; 2008; 55(3):603-12. PubMed ID: 18726008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assays for nucleosome positioning in yeast.
    Ryan MP; Stafford GA; Yu L; Cummings KB; Morse RH
    Methods Enzymol; 1999; 304():376-99. PubMed ID: 10372372
    [No Abstract]   [Full Text] [Related]  

  • 19. In silico characterization of the INO80 subfamily of SWI2/SNF2 chromatin remodeling proteins.
    Bakshi R; Prakash T; Dash D; Brahmachari V
    Biochem Biophys Res Commun; 2004 Jul; 320(1):197-204. PubMed ID: 15207721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro reconstitution of PHO5 promoter chromatin remodeling points to a role for activator-nucleosome competition in vivo.
    Ertel F; Dirac-Svejstrup AB; Hertel CB; Blaschke D; Svejstrup JQ; Korber P
    Mol Cell Biol; 2010 Aug; 30(16):4060-76. PubMed ID: 20566699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.